A Response Rate Matching Dual-Reactable Probe for Fluorescent Recognition of Hydrogen Sulfide
- Corresponding author: Wei Chao, weichao@hbu.edu.cn Li Xiaoliu, lixl@hbu.cn
Citation:
Xie Chang, Ma Chen, Jia Xu, Zhang Xueqi, Wei Chao, Zhang Pingzhu, Li Xiaoliu. A Response Rate Matching Dual-Reactable Probe for Fluorescent Recognition of Hydrogen Sulfide[J]. Chinese Journal of Organic Chemistry,
;2019, 39(11): 3277-3282.
doi:
10.6023/cjoc201905038
(a) Szabo, C. Nat. Rev. Drug Discovery 2007, 6, 917.
(b) Li, L.; Rose, P.; Moore, P. K. Annu. Rev. Pharmacol. Toxicol. 2011, 51, 169.
(c) Wallace, J. L.; Wang, R. Nat. Rev. Drug Discovery 2015, 14, 329.
(d) Kimura, H.; Shibuya, N.; Kimura, Y. Antioxid. Redox Signaling 2012, 17, 45.
(a) Kabil, O.; Banerjee, R. Antioxid. Redox Signaling 2014, 20, 770.
(b) Kimura, H. Exp. Physiol. 2011, 96, 833.
(c) Yang, G. D.; Wu, L. Y.; Jiang, B.; Yang, W.; Qi, J. S.; Cao, K.; Meng, Q. H.; Asif, K.; Mu, W. T.; Zhang, S. M.; Solomon, H.; Wang, R. Science 2008, 322, 587.
(d) Shibuya, N.; Koike, S.; Tanaka, M.; Ishigami-Yuasa, M.; Kimura, Y.; Ogasawara, Y.; Fukui, K.; Nagahara, N.; Kimura, H. Nat. Commun. 2013, 4, 1366.
(a) Kamoun, P.; Belardinelli, M. C.; Chabli, A.; Lallouchi, K.; Chadefaux-Vekemans, B. Am. J. Med. Genet., Part A 2003, 116, 310.
(b) Fiorucci, S.; Antonelli, E.; Mencarelli, A.; Orlandi, S.; Renga, B.; Rizzo, G.; Distrutti, E.; Shah, V.; Morelli, A. Hepatology 2005, 42, 539.
(a) Hu, L. F.; Lu, M.; Wu, Z. F.; Wong, P. T.; Bian, J. S. Mol. Pharmacol. 2009, 75, 27.
(b) Li, L.; Bhatia, M.; Moore, P. K. Curr. Opin. Pharmacol. 2006, 6, 125.
(a) Paul, B. D.; Snyder, S. H. Antioxid. Redox Signaling 2015, 22, 411.
(b) Furne, J.; Saeed, A.; Levitt, M. D. Am. J. Physiol.: Regul., Integr. Comp. Physiol. 2008, 295, R1479.
Kolluru, G. K.; Shen, X.; Bir, S. C.; Kevil, C. G. Nitric Oxide 2013, 35, 5.
doi: 10.1016/j.niox.2013.07.002
(a) Gao, M.; Yu, F. B.; Chen. L. X. Prog. Chem. 2014, 26, 1065 (in Chinese).
(高敏, 于法标, 陈令新, 化学进展, 2014, 26, 1065.)
(b) Lin, V. S.; Chen, W.; Xian, M.; Chang, C. J. Chem. Soc. Rev. 2015, 44, 4596.
(c) Bruemmer, K. J.; Brewer, T. F.; Chang, C. J. Curr. Opin. Chem. Biol. 2017, 39, 17.
(d) Chen, Y.; Wei, T.; Zhang, Z.; Zhang, W.; Lü, J. Chin. Chem. Lett. 2017, 28, 1957.
(a) Lippert, A. R.; New, E. J.; Chang, C. J. J. Am. Chem. Soc. 2011, 133, 10078.
(b) Peng, H. J.; Cheng, F. Y.; Dai, C. F.; Adrienne L. K.; Benjamin, L. P.; David, J. L.; Wang, B. H. Angew. Chem., Int. Ed. 2011, 50, 9672.
(c) Chen, S.; Chen, Z. J.; Ren, W.; Ai, H. W. J. Am. Chem. Soc. 2012, 134, 9589.
(d) Montoya, L. A.; Pluth, M. D. Chem. Commun. 2012, 48, 4767.
(e) Sun, W.; Fan, J. L.; Hu, C.; Cao, J. F.; Zhang, H.; Xiong, X. Q.; Wang, J. Y.; Cui, S.; Sun, S. G.; Peng, X. J. Chem. Commun. 2013, 49, 3890.
(f) Zhang, J. Y.; Guo, W. Chem. Commun. 2014, 50, 4214.
(g) Wei, C.; Wang, R. Y.; Wei, L.; Cheng, L. H.; Li, Z. F.; Xi, Z.; Yi, L. Chem.-Asian J. 2014, 9, 3586.
(h) Zhu, Z. T.; Li, Y. Y.; Wei, C.; Wen, X.; Xi, Z.; Yi, L. Chem.- Asian J. 2016, 11, 68.
(i) He, P.; Tang, L. J.; Zhong, K. L.; Hou, S. H.; Yan, X. M. Chin. J. Org. Chem. 2017, 37, 423 (in Chinese).
(何平, 汤立军, 钟克利, 侯淑华, 燕小梅, 有机化学, 2017, 37, 423.)
(a) Liu, C. R.; Pan, J.; Li, S.; Zhao, Y.; Wu, L. Y.; Berkman, C. E.; Whorton, A. R.; Xian, M. Angew. Chem., Int. Ed. 2011, 50, 10327.
(b) Cao, X. W.; Lin, W. Y.; Zheng, K. B.; He, L. W. Chem. Commun. 2012, 48, 10529.
(c) Huang, Z. J.; Ding, S. S.; Yu, D. H.; Huang, F. H.; Feng, G. D. Chem. Commun. 2014, 50, 9185.
(d) Wei, C.; Wei, L.; Xi, Z.; Yi, L. Tetrahedron Lett. 2013, 54, 6937.
(e) Wei, C.; Zhu, Q.; Liu, W. W.; Chen, W. B.; Xi, Z.; Yi, L. Org. Biomol. Chem. 2014, 12, 479.
(f) Zhao, C. C.; Zhang, X. L.; Li, K. B.; Zhu, S. J.; Guo, Z. Q.; Zhang, L. L.; Wang, F. Y.; Fei, Q.; Luo, S. H.; Shi, P.; Tian, H.; Zhu, W. H. J. Am. Chem. Soc. 2015, 137, 8490.
(g) Zhou, C.; Qiu, B.; Zeng, Y.; Chen, J. P.; Yu, T. J.; Li, Y. Chin. J. Org. Chem. 2017, 37, 92 (in Chinese).
(周婵, 邱波, 曾毅, 陈金平, 于天君, 李嫕, 有机化学, 2017, 37, 92.)
(a) Qian, Y.; Karpus, J.; Kabil, O.; Zhang, S. Y.; Zhu, H. L.; Banerjee, R.; Zhao, J.; He, C. Nat. Commun. 2011, 2, 495.
(b) Li, X.; Zhang, S.; Cao, J.; Xie, N.; Liu, T.; Yang, B.; He, Q. J.; Hu, Y. Z. Chem. Commun. 2013, 49, 8656.
(c) Liu, J.; Sun, Y. Q.; Zhang, J. Y.; Yang, T.; Cao, J. B.; Zhang, L. S.; Guo, W. Chem.-Eur. J. 2013, 19, 4717.
(d) Chen, Y. C.; Zhu, C. C.; Yang, Z. H.; Chen, J. J.; He, Y. F.; Jiao, Y.; He, W. J.; Qiu, L.; Cen, J. J.; Guo, Z. J. Angew. Chem., Int. Ed. 2013, 52, 1688.
(a) Sasakura, K.; Hanaoka, K.; Shibuya, N.; Mikami, Y.; Kimura, Y.; Komatsu, T.; Ueno, T.; Terai, T.; Kimura, H.; Nagano, T. J. Am. Chem. Soc. 2011, 133, 18003.
(b) Qu, X. Y.; Li, C. J.; Chen, H. C.; Mack, J.; Guo, Z. J.; Shen, Z. Chem. Commun. 2013, 49, 7510.
(c) Zhong, K. L.; Zhao, J.; Li, Q. Y.; Hou, S. H.; Tang, Y. W.; Bian, Y. J.; Tang, L. J. Chin. J. Org. Chem. 2018, 38, 1786 (in Chinese).
(钟克利, 赵杰, 李秋莹, 侯淑华, 汤轶伟, 边延江, 汤立军, 有机化学, 2018, 38, 1786.)
(a) Zhang, C. Y.; Wei, L.; Wei, C.; Zhang, J.; Wang, R. Y.; Xi, Z.; Yi, L. Chem. Commun. 2015, 51, 7505.
(b) Wei, C.; Wang, R. Y.; Zhang, C. Y.; Xu, G. C.; Li, Y. Y.; Zhang, Q. Z.; Li, L. Y.; Yi, L.; Xi, Z. Chem.-Asian J. 2016, 11, 1376.
(c) Ma, C.; Wei, C.; Li, X. Y.; Zheng, X. Y.; Chen, B.; Wang, M.; Zhang, P. Z.; Li, X. L. Dyes Pigm. 2019, 162, 624.
(d) Montoya, L. A.; Pearce, T. F.; Hansen, R. J.; Zakharov, L. N.; Pluth, M. D. J. Org. Chem., 2013, 78, 6550.
Xingyu Liao , Xiangming Yi , Kin Shing Chan . 追凶之路上的怪客——硫化氢. University Chemistry, 2025, 40(6): 172-176. doi: 10.12461/PKU.DXHX202408039
Jinlong YAN , Weina WU , Yuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154
Jun LUO , Baoshu LIU , Yunchang ZHANG , Bingkai WANG , Beibei GUO , Lan SHE , Tianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240
Yanxi LIU , Mengjia XU , Haonan CHEN , Quan LIU , Yuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423
Yu SU , Xinlian FAN , Yao YIN , Lin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126
Linfang ZHANG , Wenzhu YIN , Gui YIN . A 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran-based near-infrared fluorescence probe for the detection of hydrogen sulfide and imaging of living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 540-548. doi: 10.11862/CJIC.20240405
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
Meirong HAN , Xiaoyang WEI , Sisi FENG , Yuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150
Yuan ZHU , Xiaoda ZHANG , Shasha WANG , Peng WEI , Tao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232
Shuwen SUN , Gaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399
Zhifeng CAI , Ying WU , Yanan LI , Guiyu MENG , Tianyu MIAO , Yihao ZHANG . Effective detection of malachite green by folic acid stabilized silver nanoclusters. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 983-993. doi: 10.11862/CJIC.20240394
Wei GAO , Meiqi SONG , Xuan REN , Jianliang BAI , Jing SU , Jianlong MA , Zhijun WANG . A self-calibrating fluorescent probe for the selective detection and bioimaging of HClO. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1173-1182. doi: 10.11862/CJIC.20250112
Lei ZHANG , Cheng HE , Yang JIAO . An azo-based fluorescent probe for the detection of hypoxic tumor cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1162-1172. doi: 10.11862/CJIC.20250081
Shuying Zhu , Shuting Wu , Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117
Yichang Liu , Li An , Dan Qu , Zaicheng Sun . “双碳”背景下的综合设计实验——以PbCrO4催化甲基蓝的光降解速率常数测定为例. University Chemistry, 2025, 40(6): 222-229. doi: 10.12461/PKU.DXHX202407105
Jiakun BAI , Ting XU , Lu ZHANG , Jiang PENG , Yuqiang LI , Junhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002
Xueting Cao , Shuangshuang Cha , Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
Yu Dai , Xueting Sun , Haoyu Wu , Naizhu Li , Guoe Cheng , Xiaojin Zhang , Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052
(a) Time-dependent emission intensity at 440 nm of probe 5 after adding H2S. (b) The relationship between fluorescence intensity at 440 nm and reaction time of probe 1~5 on treatment with H2S
(a) Fluorescence responses of probe 5 incubated with various analytes. 1, probe 5; 2, SO32-; 3, SO42-; 4, S2O32-; 5, H2O2; 6, HClO; 7, NO2-; 8, Zn2+; 9, Fe3+; 10, Vc; 11, Cys; 12, Hcy; 13, GSH; 14, H2S. (b) Fluorescence response of probe 5 with different concentrations of H2S (Insert: The emission intensity at 440 nm of probe 5 with different concentrations of H2S). Probe 1.0×10-6 mol/L, Cys and Hcy 1.0×10-3 mol/L, GSH 5×10-3 mol/L, other interferents 1.0×10-4 mol/L; H2S 0~1.50×10-4 mol/L
UV lamp power 18 W for the optical stability test, 37 and 50 ℃ for the thermal stability test
(a) The time-dependent emission intensity at 440 nm of probe 5, 10 mmol/L L-Cys and 0~10 µg CBS enzyme. (b) The fluorescence intensity at 440 nm of probe 5 before and after treatment with inhibitors. Probe 1.0×10-5 mol/L, CBS 0.01 μg/μL, inhibitors 1.0×10-3 mol/L
(a, b) Cells incubated with probe 5 only; (c, d) Cells co-incubated with probe 5 and D-cysteine; (e, f) Cells incubated with probe 5 firstly, and then incubated with H2S