Citation: Li Mingrui, Ding Qifeng, Li Boyang, Yu Yang, Huang He, Huang Fei. Progress in the Synthesis of 1, 2, 4-Triazines by Tandem Cyclization[J]. Chinese Journal of Organic Chemistry, ;2019, 39(10): 2713-2725. doi: 10.6023/cjoc201905036 shu

Progress in the Synthesis of 1, 2, 4-Triazines by Tandem Cyclization

  • Corresponding author: Huang Fei, huangfei0208@yeah.net
  • Received Date: 14 May 2019
    Revised Date: 3 June 2019
    Available Online: 24 October 2019

    Fund Project: the National Natural Science Foundation of China 21901124the Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture XTE1850Project supported by the National Natural Science Foundation of China (No. 21901124), the Jiangsu University Natural Science Research Program (No. 19KJB150032), the China Postdoctoral Science Foundation (No. 2019M651809), the Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture (No. XTE1850) and the Postdoctoral Science Foundation of Anhui Province (No. 2018B252)the Jiangsu University Natural Science Research Program 19KJB150032the China Postdoctoral Science Foundation 2019M651809the Postdoctoral Science Foundation of Anhui Province 2018B252

Figures(25)

  • 1, 2, 4-Triazine compounds are an important class of nitrogen-containing heterocyclic compounds. They have wide applications in the fields of medicine, chemicals and materials. Therefore, green and highly efficient synthesis of 1, 2, 4-triazine compounds is increasingly attracting the attention of researchers. By tandem cyclization reaction, the post-treatment of intermediate is avoided, and the one-pot synthesis of triazine compounds is the most efficient and direct synthesis method, which conforms to the concept of green chemistry for its step and atomic economy. The formation of C-N bond based on tandem cyclization to give 1, 2, 4-triazine compounds is reviewed. The synthetic method, reaction mechanism and application of 1, 2, 4-triazine compounds are introduced under transition-metal and metal-free conditions in the past ten years. The prospects of synthesis of triazine rings are also discussed.
  • 加载中
    1. [1]

      (a) Majumdar, P.; Pati, A.; Patra, M.; Behera, R. K.; Behera, A. K. Chem. Rev. 2014, 114, 2942.
      (b) Kelly, T. R.; Elliott, E. L.; Lebedev, R.; Pagalday, J. J. Am. Chem. Soc. 2006, 128, 5646.
      (c) Blair, L. M.; Sperry, J. J. Nat. Prod. 2013, 76, 794.

    2. [2]

    3. [3]

      (a) Patrizia, D.; Annamaria, M.; Paola, B.; Antonino, L.; Alessandra, M.; Anna, M. A.; Gaetano, D.; Girolamo, C. Bioorg. Med. Chem. 2007, 15, 343.
      (b) Tomas, G.; Eva, R.; Petr, D.; Marian, H.; Vladimir, K. Monatsh. Chem. 2010, 141, 709.
      (c) Jaiprakash, N. S.; Devanand, B. S. Bioorg. Med. Chem. Lett. 2010, 20, 742.
      (d) Badran, M. M.; Ismail, M. A. H.; Abdu, N.; Abdel-Hakeem, M. Alexandria J. Pharm. Sci. 1999, 13, 101.
      (e) Thiele, K.; Gordon, C. J. S.; Fischer, J.; Jahn, U. EP 28660, 1981.
      (f) Messmer, A.; Batori, S.; Hajos, G.; Benko, P. US 4602018, 1986.
      (g) Kelly, T. R.; Elliott, E. L.; Lebedev, R.; Pagalday, J. J. Am. Chem. Soc. 2006, 128, 5646.

    4. [4]

      Solaleh, K. T.; Niloufar, A.; Mohsen, A. Apoptosis 2010, 15, 738.  doi: 10.1007/s10495-010-0496-6

    5. [5]

    6. [6]

      (a) Hay, M. P.; Hicks, K. O.; Pchalek, K.; Lee, H. H.; Blaser, A.; Pruijn, F. B.; Anderson, R. F.; Shinde, S. S.; Wilson, W. R.; Denny, W. A. J. Med. Chem. 2008, 51, 6853.
      (b) Vaithianathan, S.; Raman, S.; Jiang, W. L.; Ting, T. Y.; Kane, M. A.; Polli, J. E. Mol. Pharmaceutics 2015, 12, 2436.
      (c) Lojanapiwat, B.; Nimitvilai, S.; Bamroongya, M.; Jirajariyavej, S.; Tiradechavat, C.; Malithong, A.; Predanon, C.; Tanphaichitra, D.; Lertsupphakul, B. Infect. Drug Resist. 2019, 12, 173.

    7. [7]

      Suzuki, H.; Kawakami, T. Synthesis 1997, 855.

    8. [8]

      Baxter, M. G; Elphick, A. R.; Miller, A. A. US 4486354, 1984.

    9. [9]

      Zhang, P.; Wang, J. J.; Xiao, H.; Jiang, Y.; Jiang, X. M. CN 103539803, 2014.

    10. [10]

      (a) Dowling, M. S.; Jiao, W. H.; Hou, J.; Jiang, Y. C.; Gong, S. S. J. Org. Chem. 2018, 83, 4229.
      (b) Rätz, R.; Schroeder, H. J. Org. Chem. 1958, 23, 1931.
      (c) Saraswathi, T. V.; Srinivasan, V. R. Tetrahedron Lett. 1971, 12, 2315.
      (d) Kozhevnikov, V. N.; Kozhevnikov, D. N.; Shabunina, O. V.; Rusinov, V. L.; Chupakhin, O. N. Tetrahedron Lett. 2005, 46, 1791.

    11. [11]

      (a) Park, Y.; Kim, Y.; Chang, S. Chem. Rev. 2017, 117, 9247
      (b) Dydio, P.; Key, H. M.; Hayashi, H. J. Am. Chem. Soc. 2017, 139, 1750.
      (c) Timsina, Y. N.; Gupton, B. F.; Ellis, K. C. ACS Catal. 2018, 8, 5732.
      (d) Wang, P.; Li, G. C.; Jain, P. J. Am. Chem. Soc. 2016, 138, 14092.

    12. [12]

      Liu, L.; Tan, C.; Fan, R.; Wang, Z. H.; Du, H. G.; Xu, K.; Tan, J. J. Org. Biomol. Chem. 2019, 17, 252.  doi: 10.1039/C8OB02826E

    13. [13]

      Walsh, P. J.; Deng, G. G.; Li, M. Y.; Yu, K. L.; Liu, C. X.; Liu, Z. F.; Duan, S. Z.; Chen, W.; Yang, X. D.; Zhang, H. B. Angew. Chem., Int. Ed. 2019, 58, 2826.  doi: 10.1002/anie.201812369

    14. [14]

      Wang, J. N.; Chen, S. Q.; Liu, Z. W. J. Org. Chem. 2019, 84, 1348.  doi: 10.1021/acs.joc.8b02820

    15. [15]

      Rodionov, V. O.; Fokin, V. V.; Finn, M. G. Angew. Chem., Int. Ed. 2005, 117, 2250.  doi: 10.1002/ange.200461496

    16. [16]

      Guo, H. C.; Liu, H. L.; Zhu, F. L.; Na, R.; Jiang, H.; Wu, Y.; Zhang, L.; Li, Z.; Yu, H.; Wang, B.; Xiao, Y.; Hu, X. P.; Wang, M. Angew. Chem., Int. Ed. 2013, 52, 12641.  doi: 10.1002/anie.201307317

    17. [17]

      Adrio, J.; Carretero, J. C. Chem. Commun. 2011, 47, 6784.  doi: 10.1039/c1cc10779h

    18. [18]

      Du, J.; Xu, X.; Li, Y.; Pan, L.; Liu, Q. Org. Lett. 2014, 16, 4004.  doi: 10.1021/ol501829k

    19. [19]

      Cheng, X.; Cao, X.; Xuan, J.; Xiao, W. J. Org. Lett. 2018, 20, 52.  doi: 10.1021/acs.orglett.7b03344

    20. [20]

      Chen, Z.; Ren, N.; Ma, X. X.; Nie, J.; Zhang, F. G.; Ma, J. A. ACS Catal. 2019, 9, 4600.  doi: 10.1021/acscatal.9b00846

    21. [21]

      Hong, D.; Lin, X. F.; Zhu, Y. X.; Lei, M.; Wang, Y. G. Org. Lett. 2009, 11, 5678.  doi: 10.1021/ol902376w

    22. [22]

      Shi, B.; Lewis, W.; Campbell, I. B.; Moody, C. J. Org. Lett. 2009, 11, 3686.  doi: 10.1021/ol901502u

    23. [23]

      Wu, W.; Wang, J.; Wang, Y.; Huang, Y.; Tan, Y.; Weng, Z. Q. Angew. Chem., Int. Ed. 2017, 56, 10476.  doi: 10.1002/anie.201705620

    24. [24]

      Lin, B.; Wu, W.; Weng, Z. Q Tetrahedron 2019, 75, 2843.  doi: 10.1016/j.tet.2019.04.005

    25. [25]

      Meng, J.; Wen, M.; Zhang, S.; Pan, P.; Yu, X.; Deng, W. P. J. Org. Chem. 2017, 82, 1676.  doi: 10.1021/acs.joc.6b02846

    26. [26]

      Tang, D.; Wang, J.; Wu, P.; Guo, X.; Li, J. H.; Yang, S.; Chen, B. H. RSC Adv. 2016, 6, 12514.  doi: 10.1039/C5RA26638F

    27. [27]

      Zhang, L.; Chen, J. J.; Liu, S. S.; Liang, Y. X.; Zhao, Y. L. Adv. Synth. Catal. 2018, 360, 2172.  doi: 10.1002/adsc.201800030

    28. [28]

      Bigot, A.; Blythe, J.; Pandya, C.; Wagner, T.; Loiseleur, O. Org. Lett. 2010, 13, 192.

    29. [29]

      Crespin, L.; Biancalana, L.; Morack, T.; Blakemore, D. C.; Ley, S. V. Org. Lett. 2017, 19, 1084.  doi: 10.1021/acs.orglett.7b00101

    30. [30]

      Karthikeyan, M. S.; Mahalinga, M.; Karegoundar, P.; Poojary, B.; Holla, B. S. Phosphorus, Sulfur Silicon Relat. Elem. 2009, 184, 3231.  doi: 10.1080/10426500902979917

    31. [31]

      Tamboli, R. S.; Giridhar, R.; Mande, H. M.; Shah, S. R.; Yadav, M. R. Synth. Commum. 2014, 44, 2192.  doi: 10.1080/00397911.2014.891040

    32. [32]

      Ghorbani-Vaghei, R.; Shahriari, A.; Salimi, Z.; Hajinazari, S. RSC Adv. 2015, 5, 3665.  doi: 10.1039/C4RA10892B

    33. [33]

      Savva, A. C.; Mirallai, S. I.; Zissimou, G. A.; Berezin, A. A.; Demetriades, M.; Kourtellaris, A.; Constantinides, C. P.; Nicolaides, C.; Trypiniotis, T, ; Koutentis, P. A. J. Org. Chem. 2017, 82, 7564.  doi: 10.1021/acs.joc.7b01297

    34. [34]

      Palacios, F.; Alonso, C.; Aparicio, D.; Rubiales, G.; Jesús, M. Tetrahedron 2007, 63, 523.  doi: 10.1016/j.tet.2006.09.048

  • 加载中
    1. [1]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    2. [2]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    3. [3]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    4. [4]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    5. [5]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    6. [6]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    7. [7]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    8. [8]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    9. [9]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    10. [10]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    11. [11]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    12. [12]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    13. [13]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    14. [14]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    15. [15]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    16. [16]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    17. [17]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    18. [18]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    19. [19]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    20. [20]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

Metrics
  • PDF Downloads(40)
  • Abstract views(3844)
  • HTML views(1244)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return