Citation: Yang Sen, Ding Chengrong, Liu Xinghai, Weng Jianquan, Yuan Jing, Tan Chengxia. Synthesis and Herbicidal Activity of Chiral Aryloxyphenoxypropionic Amides Compounds[J]. Chinese Journal of Organic Chemistry, ;2019, 39(12): 3588-3593. doi: 10.6023/cjoc201905028 shu

Synthesis and Herbicidal Activity of Chiral Aryloxyphenoxypropionic Amides Compounds

  • Corresponding author: Yuan Jing, 1015251265@qq.com Tan Chengxia, tanchengxia@zjut.edu.cn
  • Received Date: 13 May 2019
    Revised Date: 3 June 2019
    Available Online: 19 December 2019

    Fund Project: Project supported by the National Key R & D Program (No. 2017YFD0200507)the National Key R & D Program 2017YFD0200507

Figures(3)

  • In order to find pesticidal lead compounds with high herbicidal activity, a series of novel chiral aryloxyphenoxypropionic amides were designed and synthesized using the principle of active substructure combination and the technology of biological enzyme splitting. The structures of the target compounds were confirmed by 1H NMR and HRMS. The preliminary bioassay data showed that all target compounds displayed excellent herbicidal activity and selectivity against monocotyledonous weeds. At the dosage of 150 g/ha, the target compounds showed herbicidal activity against Backmannia syzigachne, Polypogon fugax and Poa acroleuca with more than 75%. And the control effects of three compounds against Polypogon fugax Nees were 100%.
  • 加载中
    1. [1]

      Mu, J. X.; Shi, Y. X.; Yang, M. Y.; Sun, Z. H.; Liu, X. H.; Li, B. J.; Sun, N. B. Molecules. 2016, 21, 68.  doi: 10.3390/molecules21010068

    2. [2]

      Liu, X. H.; Fang, Y. M.; Xie, F.; Zhang, R. R.; Shen, Z. H.; Tan, C. X.; Weng, J. Q.; Xu, T. M.; Huang, H. Y. Pest Manage. Sci. 2017, 73, 1900.  doi: 10.1002/ps.4556

    3. [3]

      Wang, H.; Zhai, Z. W.; Shi, Y. X.; Tan, C. X.; Weng, J. Q.; Han, L.; Li B. J.; Liu, X. H. Lett. Drug Des. Discovery 2019, DOI: 10. 2174/1570180815666180704103047.  doi: 10.2174/1570180815666180704103047

    4. [4]

      Cheng, L.; Zhang, R. R.; Wu, H. K.; Xu, T. M.; Liu, X. H. Front. Chem. Sci. Eng. 2019, 13, 369.  doi: 10.1007/s11705-018-1734-7

    5. [5]

      Zhou, J. H.; Dai, H.; Qian, H. W.; Du, X. C, ; Mao, X. Y.; Shi, Y. J.; Feng, H.; Shi, J.; Yao, Y. Chin. J. Org. Chem. 2018, 38, 2122 (in Chinese).
       

    6. [6]

      Liu, X. H.; Xu, X. Y.; Tan, C. X.; Weng, J. Q.; Xin, J. H.; Chen, J. Pest Manage. Sci. 2015, 71, 292.  doi: 10.1002/ps.3804

    7. [7]

      Liu, X. H.; Zhai, Z. W.; Xu, X. Y.; Yang, M. Y.; Sun, Z. H.; Weng, J. Q.; Tan, C. X.; Chen, J. Bioorg. Med. Chem. Lett. 2015, 25, 5524.  doi: 10.1016/j.bmcl.2015.10.064

    8. [8]

      Cheng, L.; Zhao, W.; Shen, Z. H.; Xu, T. M.; Wu, H. K.; Peng, W. L.; Liu, X. H. Lett. Drug Des. Discovery 2019, 16, 29.

    9. [9]

      Fang, Y. M.; Zhang, R. R.; Shen, Z. H.; Tan, C. X.; Weng, J. Q.; Xu, T. M.; Liu, X. H. Huang, H. Y.; Wu, H. K. Lett. Drug Des. Discovery 2018, 15, 1314.  doi: 10.2174/1570180815666180313121735

    10. [10]

      Liu, X. H.; Wang, Q.; Sun, Z. H.; Wedge, D. E.; Becnel, J.-J.; Estep, A. S.; Tan, C. X.; Weng, J. Q. Pest Manage. Sci. 2017, 73, 953.  doi: 10.1002/ps.4370

    11. [11]

      Shen, Z. H.; Sun, Z. H.; Becnel, J.-J.; Estep, A.; Wedge, D. E.; Tan, C. X.; Weng, J. Q.; Han, L, Liu. X. H. Lett. Drug Des. Discovery 2018, 15, 951.  doi: 10.2174/1570180815666180102141640

    12. [12]

      Shi, Y. J.; Zhou, Q.; Wang, Y.; Qian, H. W.; Ye, Y. L.; Feng, X.; Chen, H.; Li, Y. T.; Dai, H.; Wei, Z. H.; Wu, J. M. Chin. J. Org. Chem. 2018, 38, 2450 (in Chinese).
       

    13. [13]

      Li, Z. F.; Luo, F. Y. Chin. J. Org. Chem. 2001, 21, 317 (in Chinese).
       

    14. [14]

      Bao, W. J.; Wu, Y. G.; Mao, C. H.; Chen, M.; Huang, M. Z. Fine Chem. Intermed. 2007, 37, 1009 (in Chinese).
       

    15. [15]

      Rendina, A. R.; Felts, J. M.; Beaudoin, J. D.; Craig-Kennard, A. C.; Look, L.-L.; Paraskos, S. L.; Hagenah, J. A. Arch. Biochem. Biophys. 1988, 265, 219.  doi: 10.1016/0003-9861(88)90387-6

    16. [16]

      Smith, A. E. J. Agric. Food Chem. 1977, 25, 893.  doi: 10.1021/jf60212a020

    17. [17]

      Walker, K. A.; Ridley, S. M.; Harwood, J. L. Biochem. J. 1988, 254, 811.  doi: 10.1042/bj2540811

    18. [18]

      Song, L. Y.; Hua, R. M.; Zhao, Y. C. J. Hazard. Mater. 2005, 118, 247.  doi: 10.1016/j.jhazmat.2004.10.020

    19. [19]

      Zhao, W.; Xing, J. H.; Xu, T. M.; Peng, W. L.; Liu, X. H. Front. Chem. Sci. Eng. 2017, 11, 363.  doi: 10.1007/s11705-016-1595-x

    20. [20]

      Zhao, W.; Shen, Z. H.; Xu, T. M.; Peng, W. L.; Liu, X. H. J. Heterocycl. Chem. 2017, 54, 1751.  doi: 10.1002/jhet.2753

    21. [21]

      Cheng, L.; Shen, Z. H.; Xu, T. M.; Tan, C. X.; Weng, J. Q.; Han, L.; Peng, W. L.; Liu. X. H. J. Heterocycl. Chem. 2018, 55, 946.  doi: 10.1002/jhet.3123

    22. [22]

      Zhao, W.; Shen, Z. H.; Xing, J. H.; Yang, G.; Xu, T. M.; Peng, W. L.; Liu, X. H. Chem. Pap. 2017, 71, 921.  doi: 10.1007/s11696-016-0012-8

    23. [23]

      Zhao, W.; Shen, Z. H.; Xing, J. H.; Xu, T. M.; Peng, W. L.; Liu, X. H. Chin. J. Struct. Chem. 2017, 36, 423.

    24. [24]

      Liu, X. H.; Qiao, L.; Zhai, Z. W.; Cai, P.-P.; Cantrell, C. L.; Tan, C. X.; Weng, J. Q.; Han, L.; Wu, H. K. Pest Manage. Sci. 2019, 75, 2892..  doi: 10.1002/ps.5463

    25. [25]

      Sun, N. B.; Shi, Y. X.; Liu, X. H.; Ma, Y.; Tan, C. X.; Weng, J. Q.; Jin, J. Z.; Li, B. J. Int. J. Mol. Sci. 2013, 14, 21741.  doi: 10.3390/ijms141121741

    26. [26]

      Zhang, J, H.; Niu, L. Z.; Li, Y.; Liu, S.; Jiang, L. Chin. J. Org. Chem. 2018, 38, 1842 (in Chinese).
       

    27. [27]

      Liu, X. H.; Weng, J. Q.; Wang, B. L.; Li, Y. H.; Tan, C. X.; Li, Z. M. Res. Chem. Intermed. 2014, 40, 2605.  doi: 10.1007/s11164-013-1113-4

    28. [28]

      Che, C. L.; Hu, Y. M.; Ding, S.-S.; Xiao, Y. M.; Li, J. Q.; Qin, Z. H. Chin. J. Org. Chem. 2019, 39, 419 (in Chinese).
       

    29. [29]

      Moon, J. K.; Keum, Y. S.; Hwang, E. C.; Park, B. S.; Chang, H. R.; Li, Q. X.; Kim, J. H. J. Agric. Food Chem. 2007, 55, 5416.  doi: 10.1021/jf070358f

    30. [30]

      Yu, Z. H.; Shi, D. Q. Phosphorus, Sulfur Silicon Relat. Elem. 2010, 185, 2316.  doi: 10.1080/10426501003598663

    31. [31]

      Liu, X. H.; Zhao, W.; Shen, Z. H.; Xing, J. H.; Yuan, J.; Yang, G.; Xu, T. M.; Peng, W. L. Bioorg. Med. Chem. Lett. 2016, 26, 3626.  doi: 10.1016/j.bmcl.2016.06.004

    32. [32]

      Asad, M. A. U.; Lavoie, M.; Song, H.; Jin, Y. J.; Fu, Z. W.; Qian, H. F. Sci. Total Environ. 2017, 580, 1287.  doi: 10.1016/j.scitotenv.2016.12.092

    33. [33]

      Liu, X. H.; Zhao, W.; Shen, Z. H.; Xing, J. H.; Xu, T. M.; Peng, W. L. Eur. J. Med. Chem. 2017, 125, 881.  doi: 10.1016/j.ejmech.2016.10.017

    34. [34]

      Schurter, R. US 4713109, 1988 [Chem. Abstr. 1988, 109, 128841].

    35. [35]

      Kim, D. W. WO 2000005956, 2000 [Chem. Abstr. 2000, 132, 118794].

    36. [36]

      Zheng, J. Y.; Wu, J. Y.; Zhang, Y. J.; Wang, Z. J. Mol. Catal. B: Enzym. 2013, 97, 62.  doi: 10.1016/j.molcatb.2013.07.016

    37. [37]

      Kourist, R.; Pablo, D. D. M.; Miyamoto, K. Green Chem. 2011, 13, 2607.  doi: 10.1039/c1gc15162b

    38. [38]

      Erdemir, S.; Yilmaz, M. J. Inclusion Phenom. Macrocyclic Chem. 2012, 72, 189.  doi: 10.1007/s10847-011-9962-1

    39. [39]

      Telschow, J. E. US 4614814, 1989 [Chem. Abstr. 1989, 111, 57259].

    40. [40]

      Han, C. P.; Sun, J.; Huang, T. H. Chem. Reag. 2015, 37, 354 (in Chinese).
       

    41. [41]

      Zhang, P. F.; Zhong, H.; Villain, F. US 20050240049, 2005 [Chem. Abstr. 2005, 143, 422130].

    42. [42]

      Sobotka, H.; Austin, J. J. Am. Chem. Soc. 1952, 74, 3813.  doi: 10.1021/ja01135a028

    43. [43]

      Shen, Y. C.; Li, Y. X.; Wang, P. Chin. J. Synth. Chem. 2006, 14, 398 (in Chinese).
       

    44. [44]

      Sugata, R.; Shashi, B. S. J. Environ. Sci. Health, Part B 2005, 40, 525.  doi: 10.1081/PFC-200061518

    45. [45]

      Sun, Z. H.; Huang, W.; Gong, Y.-Y.; Lan, J.; Liu, X. H.; Weng, J. Q.; Li, Y. S.; Tan, C. X. Chin. J. Org. Chem. 2013, 33, 2612 (in Chinese).
       

  • 加载中
    1. [1]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    2. [2]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    3. [3]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    4. [4]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    5. [5]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    6. [6]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    7. [7]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    8. [8]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    9. [9]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    10. [10]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    11. [11]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    12. [12]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    13. [13]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    14. [14]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    15. [15]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    16. [16]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    17. [17]

      Haiying Wang Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004

    18. [18]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

    19. [19]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    20. [20]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

Metrics
  • PDF Downloads(9)
  • Abstract views(699)
  • HTML views(34)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return