Citation: Dai Enrui, Luo Qing, Chen Chunlin, Ying Fengyuan, Dong Ying, Liu Yingjie, Wang Baoling, Ma Yinhai, Liang Deqiang. Copper-Catalyzed Cyanoisopropylalkenylation of N-Alkenyl-acrylamides to Give 1, 3-Dihydropyrrol-2-ones[J]. Chinese Journal of Organic Chemistry, ;2019, 39(12): 3524-3531. doi: 10.6023/cjoc201905006 shu

Copper-Catalyzed Cyanoisopropylalkenylation of N-Alkenyl-acrylamides to Give 1, 3-Dihydropyrrol-2-ones

  • Corresponding author: Liu Yingjie, liuyj691@nenu.edu.cn Liang Deqiang, liangdq695@nenu.edu.cn
  • Received Date: 5 May 2019
    Revised Date: 2 July 2019
    Available Online: 1 December 2019

    Fund Project: the National Natural Science Foundation of China 21702083the Yunnan Ten Thousand Talent Program for Young Top-Notch Talents, the Program for Innovative Research Team (in Science and Technology) in Universities of Yunnan Province, the Applied Basic Research Programs of Yunnan Science and Technology Department 2018FD028the Yunnan Ten Thousand Talent Program for Young Top-Notch Talents, the Program for Innovative Research Team (in Science and Technology) in Universities of Yunnan Province, the Applied Basic Research Programs of Yunnan Science and Technology Department 2018FH001-002the Excellent Youth Project of Heilongjiang Natural Science Foundation YQ2019B004Project supported by the National Natural Science Foundation of China (No. 21702083), the Yunnan Ten Thousand Talent Program for Young Top-Notch Talents, the Program for Innovative Research Team (in Science and Technology) in Universities of Yunnan Province, the Applied Basic Research Programs of Yunnan Science and Technology Department (Nos. 2018FD028, 2018FH001-002), the Excellent Youth Project of Heilongjiang Natural Science Foundation (No. UNPYSCT-2016181), the Scientific Research Funds of Yunnan Education Department (No. 2017ZDX048) and the Research Foundation for Introduced Talents of Kunming University (No. YJL19001)the Scientific Research Funds of Yunnan Education Department 2017ZDX048the Research Foundation for Introduced Talents of Kunming University YJL19001

Figures(2)

  • A copper-catalyzed cyanoisopropylation/cyclization cascade of N-alkenylacrylamides is presented, providing a straightforward and chemoselective access to 1, 3-dihydropyrrol-2-ones. In acrylamide-based radical cyclization, radical-trapping groups are mainly restricted to aryl, alkynyl or cyano group. But in this reaction, the enaminic double bond was used as an inbuilt radical trap, while the olefinic bond of the acrylamidyl moiety acted as the radical acceptor. Such chemoselectivity might be attributed to polarity matching.
  • 加载中
    1. [1]

      For recent reviews, see: (a) Smith, J. M.; Harwood, S. J.; Baran, P. S. Acc. Chem. Res. 2018, 51, 1807.
      (b) Yi, H.; Zhang, G.; Wang, H.; Huang, Z.; Wang, J.; Singh, A. K.; Lei, A. Chem. Rev. 2017, 117, 9016.
      (c) Song, H.; Liu, X.; Qin, Y. Acta Chim. Sinica 2017, 75, 1137(in Chinese).
      (宋颢, 刘小宇, 秦勇, 化学学报, 2017, 75, 1137.)

    2. [2]

      For reviews on N-arylacrylamide chemistry: (a) Abdukader, A.; Zhang, Y.; Zhang, Z.; Liu, C. Chin. J. Org. Chem. 2016, 36, 875(in Chinese).
      (阿布力米提•阿布都卡德尔, 张永红, 张增鹏, 刘晨江, 有机化学, 2016, 36, 875.)
      (b) Chen, J.; Yu, X.; Xiao, W. Synthesis 2015, 47, 604.

    3. [3]

      For recent examples of oxindole synthesis from N-arylacrylamides: (a) Zhang, Z.; Zhang, L.; Cao, Y.; Li, F.; Bai, G.; Liu, G.; Yang, Y.; Mo, F. Org. Lett. 2019, 21, 762.
      (b) Lu, K.; Han, X.; Yao, W.; Luan, Y.; Wang, Y.; Chen, H.; Xu, X.; Zhang, K.; Ye, M. ACS Catal. 2018, 8, 3913.
      (c) Yu, H.; Hu, B.; Huang, H. Chem.-Eur. J. 2018, 24, 7114.
      (d) He, Z.; Guo, J.; Tian, S. Adv. Synth. Catal. 2018, 360, 1544.
      (e) Tian, W.; Xu, S.; Liang, Z.; Sun, D.; Zhang, R. Chin. J. Org. Chem. 2016, 36, 2121(in Chinese).
      (田文艳, 徐松, 梁中卫, 孙德立, 张荣华, 有机化学, 2016, 36, 2121.)
      (f) Sheng, W.; Jin, C.; Shan, S.; Jia, Y.; Gao, J. Chin. J. Org. Chem. 2016, 36, 325(in Chinese).
      (盛卫坚, 金城安, 单尚, 贾义霞, 高建荣, 有机化学, 2016, 36, 325.)

    4. [4]

      (a) Huang, S.; Niu, P.; Su, Y.; Hu, D.; Huo, C. Org. Biomol. Chem. 2018, 16, 774.
      (b) Zhang, L.; Liu, Z.; Wang, R.; Jin, Y.; Xia, X. Synlett 2018, 29, 1520.
      (c) Niu, Y.; Xia, X.; Yuan, Y. Synlett 2018, 29, 617.

    5. [5]

      Yuan, L.; Jiang, S.; Li, Z.; Zhu, Y.; Yu, J.; Li, L.; Li, M.; Tang, S.; Sheng, R. Org. Biomol. Chem. 2018, 16, 2406.  doi: 10.1039/C8OB00132D

    6. [6]

      Ying, W.; Chen, W.; Bao, W.; Gao, L.; Wang, X.; Chen, G.; Ge, G.; Wei, W. Synlett 2018, 29, 1664.  doi: 10.1055/s-0037-1609752

    7. [7]

      (a) Liu, Y.; Song, R.; Luo, S.; Li, J. Org. Lett. 2018, 20, 212.
      (b) Yang, Y.; Song, R.; Li, Y.; Ouyang, X.; Li, J.; He, D. Chem. Commun. 2018, 54, 1441.

    8. [8]

      (a) Yang, T.; Xia, W.; Shang, J.; Li, Y.; Wang, X.; Sun, M.; Li, Y. Org. Lett. 2019, 21, 444.
      (b) Wu, L.; Yang, Y.; Song, R.; Xu, J.; Li, J.; He, D. Chem. Commun. 2018, 54, 1367.
      (c) Yu, Y.; Yuan, W.; Huang, H.; Cai, Z.; Liu, P.; Sun, P. J. Org. Chem. 2018, 83, 1654.
      (d) Zhang, C.; Pi, J.; Wang, L.; Liu, P.; Sun, P. Org. Biomol. Chem. 2018, 16, 9223.

    9. [9]

      Xu, X.; Zhao, L.; Zhu, J.; Wang, M. Angew. Chem., Int. Ed. 2016, 55, 3799.  doi: 10.1002/anie.201600119

    10. [10]

      (a) Abbas, S. H.; Abuo-Rahma, G. E. A. A.; Abdel-Aziz, M.; Aly, O. M.; Beshr, E. A.; Gamal-Eldeen, A. M. Bioorg. Chem. 2016, 66, 46.
      (b) Lill, A. P.; Rödl, C. B.; Steinhilber, D.; Stark, H.; Hofmann, B. Eur. J. Med. Chem. 2015, 89, 503.

    11. [11]

      (a) Purc, A.; Espinoza, E. M.; Nazir, R.; Romero, J. J.; Skonieczny, K.; Jeżewski, A.; Larsen, J. M.; Gryko, D. T.; Vullev, V. I. J. Am. Chem. Soc. 2016, 138, 12826.
      (b) Jiang, B.; Du, C.; Li, M.; Gao, K.; Kou, L.; Chen, M.; Liu, F.; Russell, T. P.; Wang, H. Polym. Chem. 2016, 7, 3311.

    12. [12]

      (a) Huang, W.; Li, X.; Song, X.; Luo, Q.; Li, Y.; Dong, Y.; Liang, D.; Wang, B. J. Org. Chem. 2019, 84, 6072.
      (b) Liang, D.; Huo, B.; Dong, Y.; Wang, Y.; Dong, Y.; Wang, B.; Ma, Y. Chem.-Asian J. 2019, 14, 1932.
      (c) Ji, Y.; Yang, S.; Lin, S.; Wang, Y.; Ji, C.; Liu, Y.; Liang, D. Synlett 2019, 30, 1329.
      (d) Liang, D.; Song, X.; Xu, L.; Sun, Y.; Dong, Y.; Wang, B.; Li, W. Tetrahedron 2019, 75, 3495.
      (e) Wang, X.; Zhao, X.; Li, X.; Huo, B.; Dong, Y.; Liang, D.; Ma, Y. Tetrahedron Lett. 2019, 60, 1306.
      (f) Li, W.; Sun, Y.; Yao, Y.; Xu, Y.; Li, P.; Liu, Y.; Liang, D. Chin. J. Org. Chem. 2019, 39, 1727(in Chinese).
      (李文兰, 孙一茼, 姚永超, 许颖, 李鹏, 刘颖杰, 梁德强, 有机化学, 2019, 39, 1727.)

    13. [13]

      (a) Li, Y.; Yang, R.; Zhao, X.; Yao, Y.; Yang, S.; Wu, Q.; Liang, D. Synth. Commun. 2019, 46, 735.
      (b) Li, Y.; Chang, Y.; Li, Y.; Cao, C.; Yang, J.; Wang, B.; Liang, D. Adv. Synth. Catal. 2018, 360, 2488 and references cited therein.

    14. [14]

      For recent reviews, see: (a) Fu, X.; Zhao, W. Chin. J. Org. Chem. 2019, 39, 625(in Chinese).
      (付晓飞, 赵文献, 有机化学, 2019, 39, 625.)
      (b) Liu, Y.; Lin, L.; Han, Y.; Zhang, X. Chin. J. Org. Chem. 2019, 39, 2705(in Chinese).
      (刘颖杰, 林立青, 韩莹徽, 张鑫, 有机化学, 2019, 39, 2705.)
      (c) Lin, J.; Song, R.; Hu, M.; Li, J. Chem. Rec. 2019, 19, 440.
      (d) Dong, Z.; Ren, Z.; Thompson, S. J.; Xu, Y.; Dong, G. Chem. Rev. 2017, 117, 9333.

    15. [15]

      (a) Liang, D.; Li, X.; Li, Y.; Yang, Y.; Gao, S.; Cheng, P. RSC Adv. 2016, 6, 29020.
      (b) Liang, D.; Li, X.; Wang, C.; Dong, Q.; Wang, B.; Wang, H. Tetrahedron Lett. 2016, 57, 5390.
      (c) Liang, D.; Li, X.; Zhang, W.; Li, Y.; Zhang, M.; Cheng, P. Tetrahedron Lett. 2016, 57, 1027.
      (d) Liang, D.; Li, X.; Yang, J.; Li, Y.; Wang, B.; Cheng, P. Synth. Commun. 2016, 46, 1924.

    16. [16]

      For a review, see:Roberts, B. P. Chem. Soc. Rev. 1999, 28, 25.

    17. [17]

      For selected examples: (a) Hu, A.; Guo, J.; Pan, H.; Zuo, Z. Science 2018, 361, 66.
      (b) Trowbridge, A.; Reich, D.; Gaunt, M. J. Nature 2018, 561, 522.
      (c) Guo, X.; Wenger, O. S. Angew. Chem., Int. Ed. 2018, 57, 2469.
      (d) Ryu, I.; Miyazato, H.; Kuriyama, H.; Matsu, K.; Tojino, M.; Fukuyama, T.; Minakata, S.; Komatsu, M. J. Am. Chem. Soc. 2003, 125, 5632.

    18. [18]

      (a) Sun, K.; Wang, S.; Feng, R.; Zhang, Y.; Wang, X.; Zhang, Z.; Zhang, B. Org. Lett. 2019, 21, 2052.
      (b) Wu, H.; Zhang, Z.; Liu, Q.; Liu, T.; Ma, N.; Zhang, G. Org. Lett. 2018, 20, 2897.
      (c) Zhang, Z.; Qian, J.; Zhang, G.; Ma, N.; Liu, Q.; Liu, T.; Sun, K.; Shi, L. Org. Chem. Front. 2016, 3, 344.
      (d) Yan, X.; Zhang, Z.; Zhang, G.; Ma, N.; Liu, Q.; Liu, T.; Shi, L. Tetrahedron 2016, 72, 4245.
      (e) Zhang, Z.; Yan, X.; Zhang, G.; Liu, Q.; Ma, N.; Liu, T.; Shi, L. Tetrahedron 2016, 72, 3077.
      (f) Tang, S.; Zhou, D.; Li, Z.; Fu, M.; Li, J.; Sheng, R.; Li, S. Synthesis 2015, 47, 1567.
      (g) Qian, J.; Zhang, Z.; Liu, Q.; Liu, T.; Zhang, G. Adv. Synth. Catal. 2014, 356, 3119.

    19. [19]

      (a) Pankajakshan, S.; Xu, Y.; Cheng, J. K.; Low, M. T.; Loh, T. Angew. Chem., Int. Ed. 2012, 51, 5701.
      (b) Kobayashi, M.; Suda, T.; Noguchi, K.; Tanaka, K. Angew. Chem., Int. Ed. 2011, 50, 1664.

  • 加载中
    1. [1]

      Lei ZHANGCheng HEYang JIAO . An azo-based fluorescent probe for the detection of hypoxic tumor cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1162-1172. doi: 10.11862/CJIC.20250081

    2. [2]

      Jing-Qi TaoShuai LiuTian-Yu ZhangHong XinXu YangXin-Hua DuanLi-Na Guo . Photoinduced copper-catalyzed alkoxyl radical-triggered ring-expansion/aminocarbonylation cascade. Chinese Chemical Letters, 2024, 35(6): 109263-. doi: 10.1016/j.cclet.2023.109263

    3. [3]

      Yu-Yu TanLin-Heng HeWei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986

    4. [4]

      Hongping ZhaoWeiming Yuan . Merging catalytic electron donor-acceptor complex and copper catalysis: Enantioselective radical carbocyanation of alkenes. Chinese Chemical Letters, 2025, 36(10): 110894-. doi: 10.1016/j.cclet.2025.110894

    5. [5]

      Qi LiZi-Lu WangYun-He Xu . Copper-catalyzed 1,4-silylcyanation of 1,3-enynes: A silyl radical-initiated approach for synthesis of difunctionalized allenes. Chinese Chemical Letters, 2025, 36(3): 109991-. doi: 10.1016/j.cclet.2024.109991

    6. [6]

      Kongchuan WuDandan LuJianbin LinTing-Bin WenWei HaoKai TanHui-Jun Zhang . Elucidating ligand effects in rhodium(Ⅲ)-catalyzed arene–alkene coupling reactions. Chinese Chemical Letters, 2024, 35(5): 108906-. doi: 10.1016/j.cclet.2023.108906

    7. [7]

      Yi-Kao XuGuo-Ping LuoLiang-Bin HuWei-Min He . Asymmetric Büchner reaction and arene cyclopropanation via copper-catalyzed controllable cyclization of diynes. Chinese Chemical Letters, 2025, 36(8): 111226-. doi: 10.1016/j.cclet.2025.111226

    8. [8]

      Yu-Hang MiaoZheng-Xu ZhangXu-Yi HuangYuan-Zhao HuaShi-Kun JiaXiao XiaoMin-Can WangLi-Ping XuGuang-Jian Mei . Catalytic asymmetric dearomative azo-Diels–Alder reaction of 2-vinlyindoles. Chinese Chemical Letters, 2024, 35(4): 108830-. doi: 10.1016/j.cclet.2023.108830

    9. [9]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    10. [10]

      Kuanhong CaoSainan ChuYuanhua DingShanming LuLei YuJuan Du . Sustainable Se/C catalysts from carbohydrates: Unlocking oxidative deoximation reaction with high turnover numbers via free radical mechanisms. Chinese Chemical Letters, 2026, 37(1): 111486-. doi: 10.1016/j.cclet.2025.111486

    11. [11]

      Shaonan Tian Yu Zhang Qing Zeng Junyu Zhong Hui Liu Lin Xu Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160

    12. [12]

      Pan ZhouTing ZouHong-Jian SongYu-Xiu LiuQing-Min Wang . Advances in organoelectrochemical copper-catalyzed reactions. Chinese Chemical Letters, 2026, 37(1): 111673-. doi: 10.1016/j.cclet.2025.111673

    13. [13]

      Guoliang Liu Zhiqiang Liu Anmin Zheng . Modulation of zeolite surface realizes dynamic copper species redispersion. Chinese Journal of Structural Chemistry, 2024, 43(6): 100308-100308. doi: 10.1016/j.cjsc.2024.100308

    14. [14]

      Luyao Lu Chen Zhu Fei Li Pu Wang Xi Kang Yong Pei Manzhou Zhu . Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(10): 100411-100411. doi: 10.1016/j.cjsc.2024.100411

    15. [15]

      Rui TIANDuo LIYuan RENJiamin CHAIXuehua SUNHaoyu LIYuecheng ZHANG . Dual-ligand-modified copper nanoclusters: Synthesis and application in ornidazole detection. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1245-1255. doi: 10.11862/CJIC.20240389

    16. [16]

      Lei ZhangChenyang KouKun NiYiwen ChenTongchuan ZhangBaoliang Zhang . Microenvironment regulation of copper sites by chelating hydrophobic polymer for electrosynthesis of ethylene. Chinese Chemical Letters, 2025, 36(6): 110836-. doi: 10.1016/j.cclet.2025.110836

    17. [17]

      Ji-Jia ZhouLi-Gao LiuZhen-Tao ZhangHao-Xuan DongXin LuZhou XuXin-Qi ZhuBo ZhouLong-Wu Ye . Copper-catalyzed asymmetric cascade diyne cyclization/Meinwald rearrangement. Chinese Chemical Letters, 2025, 36(9): 110870-. doi: 10.1016/j.cclet.2025.110870

    18. [18]

      Rui TIANJiamin CHAIJunyu CHENYuan RENXuehua SUNHaoyu LIYuecheng ZHANG . Chitosan/silica-coated copper nanoclusters: Synthesis and application in cefixime detection. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1903-1915. doi: 10.11862/CJIC.20250026

    19. [19]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    20. [20]

      Ting HuYuxuan GuoYixuan MengZe ZhangJi YuJianxin CaiZhenyu Yang . Uniform lithium deposition induced by copper phthalocyanine additive for durable lithium anode in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108603-. doi: 10.1016/j.cclet.2023.108603

Metrics
  • PDF Downloads(7)
  • Abstract views(1228)
  • HTML views(83)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return