Citation: Zhang Liu, Zhang Mengfan, Qi Chenze, Yang Zhen. Synthetic Studies toward Natural Occurred Cyanolide A and Cocosolide[J]. Chinese Journal of Organic Chemistry, ;2019, 39(11): 3105-3113. doi: 10.6023/cjoc201904071 shu

Synthetic Studies toward Natural Occurred Cyanolide A and Cocosolide

  • Corresponding author: Yang Zhen, yangzhen09@usx.edu.cn
  • Received Date: 29 April 2019
    Revised Date: 17 June 2019
    Available Online: 9 November 2019

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21302129) and the Natural Science Foundation of Zhejiang Province (No. LQ13B020002)the National Natural Science Foundation of China 21302129the Natural Science Foundation of Zhejiang Province LQ13B020002

Figures(14)

  • Cyanolide A and cocosolide, two 16-membered dimeric macrolide xylopyranosides, were isolated from Guam and Papua New Guinea, respectively. Their fascinating structures and outstanding biological activities had attracted great attentions from chemists. The synthesis of cyanolide A and cocosolide is reviewed based on the construction methods of tetrahydropyran ring, which involves oxo-Michael addition reaction, oxo-carbenium cyclization and transition-metal catalyzed cyclization reactions.
  • 加载中
    1. [1]

      Newman, D. J.; Cragg, G. M. J. Nat. Prod. 2016, 79, 629.  doi: 10.1021/acs.jnatprod.5b01055

    2. [2]

      Giordanetto, F.; Kihlberg, J. J. Med. Chem. 2014, 57, 278.  doi: 10.1021/jm400887j

    3. [3]

      McGuire, J. M.; Bunch, R. L.; Anderson, R. C.; Boaz, H. E.; Flynn, E. H.; Powell, H. M.; Smith, J. W. Antibiot. Chemother. 1952, 2, 281.

    4. [4]

      Altmann, K.-H.; Gaugaz, F. Z.; Schiess, R. Mol. Diversity 2011, 15, 383.  doi: 10.1007/s11030-010-9291-0

    5. [5]

      Seiple, I. B.; Zhang, Z. Y.; Jakubec, P.; Langlois-Mercier, A.; Wright, P. M.; Hog, D. T.; Yabu, K. Z.; Allu, S. R.; Fukuzaki, T.; Carlsen, P. N.; Kitamura, Y.; Zhou, X.; Condakes, M. L.; Szczypiński, F. T.; Green, W. D.; Myers, A. G. Nature 2016, 533, 338.  doi: 10.1038/nature17967

    6. [6]

      Pereira, A. R.; McCue, C. F.; Gerwick, W. H. J. Nat. Prod. 2010, 73, 217.  doi: 10.1021/np9008128

    7. [7]

      Gunaseker, S. P.; Li, Y.; Ratnayake, R.; Luo, D. M.; Lo, J.; Reibenspies, J. H.; Xu, Z. S.; Clare-Salzler, M. J.; Ye, T.; Paul, V. J.; Luesch, H. Chem.-Eur. J. 2016, 22, 8158.  doi: 10.1002/chem.201600674

    8. [8]

      Rao, R. M.; Faulkner, D. J. J. Nat. Prod. 2002, 65, 386.  doi: 10.1021/np010495l

    9. [9]

      Steinmann, P.; Keiser, J.; Bos, R.; Tanner, M.; Utzinger, J. Lancet. Infect. Dis. 2006, 6, 411.  doi: 10.1016/S1473-3099(06)70521-7

    10. [10]

      Chitsulo, L.; Engels, D.; Montresor, A.; Savioli, L. Acta Trop. 2000, 77, 41.  doi: 10.1016/S0001-706X(00)00122-4

    11. [11]

      World Health Organization Report of the Scientific Working Group Meeting on Schistosomiasis, Geneva, Switzerland, November 14~16, 2005.

    12. [12]

      (a) Hong, J.; Kim, H. Org. Lett. 2010, 12, 2880.
      (b) Hajare, A. K.; Ravikumar, V.; Khaleel, S.; Bhuniya, D.; Reddy, D. S. J. Org. Chem. 2011, 76, 963.
      (c) Yang, Z.; Xie, X.; Jing, P.; Zhao, G.; Zheng, J.; Zhao, C.; She, X. Org. Biomol. Chem. 2011, 9, 984.
      (d) Pabbaraja, S.; Satyanarayana, K.; Ganganna, B.; Yadav, J. S. J. Org. Chem. 2011, 76, 1922.
      (e) Gesinski, M. R.; Rychnovsky, S. D. J. Am. Chem. Soc. 2011, 133, 9727.
      (f) Sharpe, R. J.; Jennings, M. P. J. Org. Chem. 2011, 76, 8027.
      (g) Tay, G. C.; Gesinski, M. R.; Rychnovsky, S. D. Org. Lett. 2013, 15, 4536.
      (h) Waldeck, A. R.; Krische, M. J. Angew. Chem., Int. Ed. 2013, 52, 4470.
      (i) Bates, R. W.; Lek, T. G. Synthesis 2014, 46, 1731.
      (j) Che, W.; Li, Y. Z.; Liu, J. C.; Zhu, S. F.; Xie, J. H.; Zhou, Q. L. Org. Lett. 2019, 21, 2369.
      (j) Lee, K.; Lanier, M. L.; Kwak, J. H.; Kim, H.; Hong, J. Y. Nat. Prod. Rep. 2016, 33, 1393.

    13. [13]

      (a) Ye, T.; Xu, Z.; Li, Y.; Luesch, H.; Paul, V. J.; Gunasekera, S. P. CN 105884843, 2016.
      (b) Luesch, H.; Paul, V. J.; Gunasekera, S. WO 2017152099, 2017.

    14. [14]

      Armesto, D.; Horspool, W. M.; Gallego, M. G.; Agarrabeitia, A. R. J. Chem. Soc., Perkin Trans. 1 1992, 163.

    15. [15]

      Mohapatra, D. K.; Das, P. P.; Reddy, D. S.; Yadav, J. S. Tetrahedron Lett. 2009, 50, 5941.  doi: 10.1016/j.tetlet.2009.08.028

    16. [16]

      Barry, C. S.; Bushby, N.; Charmant, J. P. H.; Elsworth, J. D.; Harding, J. R.; Willis, C. L. Chem. Commun. 2005, 5097

    17. [17]

      (a) Nugent, W. A. Chem. Commun. 1999, 1369.
      (b) Chen, Y. K.; Lurain, A. E.; Walsh, P. J. J. Am. Chem. Soc. 2002, 124, 12225.

    18. [18]

      Shiina, I.; Kubota, M.; Oshiumi, H.; Hashizume, M. J. Org. Chem. 2004, 69, 1822.  doi: 10.1021/jo030367x

    19. [19]

      Ball, M.; Baron, A.; Bradshaw, B.; Omori, H.; MacCormick, S.; Thomas, E. J. Tetrahedron Lett. 2004, 45, 8737.  doi: 10.1016/j.tetlet.2004.09.124

    20. [20]

      Liu, J.; Yang, J. H.; Ko, C.; Hsung, R. P. Tetrahedron Lett. 2006, 47, 6121.  doi: 10.1016/j.tetlet.2006.06.067

    21. [21]

      Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi, M. Bull. Chem. Soc. Jpn. 1979, 52, 1989.  doi: 10.1246/bcsj.52.1989

    22. [22]

      Crimmins, M. T.; Emmitte, K. A. Org. Lett. 1999, 1, 2029.  doi: 10.1021/ol991201e

    23. [23]

      Corey, E. J.; Bakshi, R. K.; Shibata, S. J. Am. Chem. Soc. 1987, 109, 5551.  doi: 10.1021/ja00252a056

    24. [24]

      (a) Bower, J. F.; Kim, I. S.; Patman, R. L.; Krische, M. J. Angew. Chem., Int. Ed. 2008, 48, 34.
      (b) Patman, R. L.; Bower, J. F.; Kim, I. S.; Krische, M. J. Aldrichim. Acta 2008, 41, 95.
      (c) Han, S. B.; Kim, I. S.; Krische, M. J. Chem. Commun. 2009, 7278.

    25. [25]

      Fuwa, H.; Noto, K.; Sasaki, M. Org. Lett. 2011, 13, 1820.  doi: 10.1021/ol200333p

    26. [26]

      Fuwa, H. Heterocycles 2012, 85, 1255.  doi: 10.3987/REV-12-730

    27. [27]

      Pirrung, M. C.; Kenney, P. M. J. Org. Chem. 1987, 52, 2335.  doi: 10.1021/jo00387a053

    28. [28]

      (a) Che, W.; Wen, D. C.; Zhu, S. F.; Zhou, Q. L. Org. Lett. 2018, 20, 3305.
      (b) Bao, D. H.; Wu, H. L.; Liu, C.-L.; Xie, J. H.; Zhou, Q. L. Angew. Chem., Int. Ed. 2015, 54, 8791.

    29. [29]

      Sun, J.; Dong, Y.; Cao, L.; Wang, X.; Wang, S.; Hu, Y., J. Org. Chem. 2004, 69, 8932.  doi: 10.1021/jo0486239

    30. [30]

      Schaus, S. E.; Brandes, B. D.; Larrow, J. F.; Tokunaga, M.; Hansen, K. B.; Gould, A. E.; Furrow, M. E.; Jacobsen, E. N. J. Am. Chem. Soc. 2002, 124, 1307.  doi: 10.1021/ja016737l

    31. [31]

      Nicolaou, K. C.; Li, A.; Edmonds, D. J.; Tria, S.; Ellery, S. P. J. Am. Chem. Soc. 2009, 131, 16905.  doi: 10.1021/ja9068003

    32. [32]

      Zhang, Y.; Sammakia, T. J. Org. Chem. 2006, 71, 6262.  doi: 10.1021/jo0605694

    33. [33]

      VanRheenen, V.; Kelly, R. C.; Cha, D. Y. Tetrahedron Lett. 1976, 17, 1973  doi: 10.1016/S0040-4039(00)78093-2

    34. [34]

      (a) Evans, D. A.; Gauchet-Prunet, J. A. J. Org. Chem., 1993, 58, 2446.
      (b) Rotulo-Sims, D.; Prunet, J. Org. Lett. 2007, 9, 4147

    35. [35]

      Evans, D. A.; Dart, M. J.; Duffy, J. L.; Yang, M. G. J. Am. Chem. Soc. 1996, 118, 4322.  doi: 10.1021/ja953901u

    36. [36]

      Narasaka, K.; Pai, F. C. Tetrahedron 1984, 40, 2233.  doi: 10.1016/0040-4020(84)80006-X

    37. [37]

      Evans, D. A.; Hoveyda, A. H. J. Am. Chem. Soc. 1990, 112, 6447  doi: 10.1021/ja00173a071

    38. [38]

      Petrier, C.; Luche, J. L. J. Org. Chem. 1985, 50, 910.  doi: 10.1021/jo00206a047

    39. [39]

      White, J. D.; Hong, J.; Robarge, L. A. Tetrahedron Lett. 1999, 40, 1463.  doi: 10.1016/S0040-4039(98)02693-8

    40. [40]

      Gao, D.; O'Doherty, G. A. J. Org. Chem. 2005, 70, 9932.  doi: 10.1021/jo051681p

    41. [41]

      Reiff, E. A.; Nair, S. K.; Henri, J. T.; Greiner, J. F.; Reddy, B. S.; Chakrasali, R.; David, S. A.; Chiu, T.-L.; Amin, E. A.; Himes, R. H.; Vander Velde, D. G.; Georg, G. I. J. Org. Chem. 2010, 75, 86.  doi: 10.1021/jo901752v

    42. [42]

      (a) Armstrong, A.; Scutt, J. N. Org. Lett. 2003, 5, 2331.
      (b) Armstrong, A.; Scutt, J. N. Chem. Commun. 2004, 510.
      (c) Delhaye, L.; Merschaert, A.; Delbeke, P.; Briúne, W. Org. Process Res. Dev. 2007, 11, 689.
      (d) Bray, C. D.; Minicone, F. Chem. Commun. 2010, 46, 5867.
      (e) Kumar, P.; Dubey, A.; Harbindu, A. Org. Biomol. Chem. 2012, 10, 6987.

    43. [43]

      (a) Ren, R. G.; Mao, Z. Y.; Wei, B. G.; Lin, G. G. Chin. J. Org. Chem. 2015, 35, 2313 (in Chinese).
      (任荣国, 毛卓亚, 魏邦国, 林国强, 有机化学, 2015, 35, 2313.)
      (b) Yu, J. F.; Feng, R. K.; Yang, Z. Chin. J. Org. Chem. 2017, 37, 2526 (in Chinese).
      (于江帆, 冯若昆, 杨震, 有机化学, 2017, 37, 2526.

    44. [44]

      Shi, D. X.; Feng, X.; Zhuang, X. L.; Chai, H. X.; Liu, T.; Zhang, Q.; Li, J. R. Chin. J. Org. Chem. 2014, 34, 2543 (in Chinese).
       

  • 加载中
    1. [1]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    2. [2]

      Yan Qi Yueqin Yu Weisi Guo Yongjun Liu . 过渡金属参与的有机反应案例教学与实践探索. University Chemistry, 2025, 40(6): 111-117. doi: 10.12461/PKU.DXHX202411021

    3. [3]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    4. [4]

      Zihao Guo Shichen Ma Kin Shing Chan . 烯烃环化反应中6电子试剂的等瓣相似性和等电子关系. University Chemistry, 2025, 40(6): 160-166. doi: 10.12461/PKU.DXHX202408038

    5. [5]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    6. [6]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    7. [7]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    8. [8]

      Xinghai Liu Hongke Wu . Exploration and Practice of Ideological and Political Education in Heterocyclic Chemistry Based on "Fentanyl" Event. University Chemistry, 2024, 39(8): 359-364. doi: 10.3866/PKU.DXHX202312100

    9. [9]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    10. [10]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    11. [11]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    12. [12]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    13. [13]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    14. [14]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    15. [15]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    16. [16]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    17. [17]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    18. [18]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    19. [19]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    20. [20]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

Metrics
  • PDF Downloads(26)
  • Abstract views(1178)
  • HTML views(214)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return