Study of Charge-Conjugated Self-Assembly Behavior of Amphiphilic Block Copolypeptides/Helicene
- Corresponding author: Tang Songchao, schtang@ecust.edu.cn Yao Yuan, yaoyuan@ecust.edu.cn
Citation:
Wang Jinglin, Shen Chengshuo, Tang Songchao, Yao Yuan. Study of Charge-Conjugated Self-Assembly Behavior of Amphiphilic Block Copolypeptides/Helicene[J]. Chinese Journal of Organic Chemistry,
;2019, 39(10): 2973-2979.
doi:
10.6023/cjoc201904038
Gröhn, F. Soft Matter 2010, 6, 4296.
doi: 10.1039/c0sm00411a
Rybtchinski, B. ACS Nano 2011, 5, 6791.
doi: 10.1021/nn2025397
Faul, C. F. Acc. Chem. Res. 2014, 47, 3428.
doi: 10.1021/ar500162a
Kim, B. G.; Kim, M. S.; Kim, J. ACS Nano 2010, 4, 2160.
doi: 10.1021/nn901568w
Malinsky, J. E.; Jabbour, G. E.; Shaheen, S. E.; Anderson, J. D.; Richter, A. G.; Marks, T. J.; Armstrong, N. R.; Kippelen, B.; Dutta, P.; Peyghambarian, N. Adv. Mater. 1999, 11, 227.
doi: 10.1002/(SICI)1521-4095(199903)11:3<227::AID-ADMA227>3.0.CO;2-3
Palma, A.; Satta, M. J. Chem. Theory Comput. 2016, 12, 4042.
doi: 10.1021/acs.jctc.6b00430
Li, Y.; Zhang, X.; Cao, D. J. Phys. Chem. B 2013, 117, 6733.
doi: 10.1021/jp312124x
Zhao, Y.; Mei, L.; Lu, Q. Langmuir 2008, 24, 3937.
doi: 10.1021/la703673s
Wicklein, A.; Ghosh, S.; Sommer, M.; Würthner, F.; Thelakkat, M. ACS Nano 2009, 3, 1107.
doi: 10.1021/nn9001165
Wang, C.; Guo, Y.; Wang, Z.; Zhang, X. Langmuir 2010, 26, 14509.
doi: 10.1021/la102586b
Yao, Y.; Zhang, L.; Leydecker, T.; Samorì, P. J. Am. Chem. Soc. 2018, 140, 6984.
doi: 10.1021/jacs.8b03526
Liu, W.; Liu, J.; Liu, W.; Li, T. J. Agric. Food Chem. 2013, 61, 4133.
doi: 10.1021/jf305329n
Omura, Y.; Kyung, K. H.; Shiratori, S.; Kim, S. H. Ind. Eng. Chem. Res. 2014, 53, 11727.
doi: 10.1021/ie403736r
Fang, R.; Zhang, H.; Yang, L.; Wang, H.; Tian, Y.; Zhang, X.; Jiang, L. J. Am. Chem. Soc. 2016, 138, 16372.
doi: 10.1021/jacs.6b09601
Pappa, A. M.; Inal, S.; Roy, K.; Zhang, Y. ACS Appl. Mater. Inter. 2017, 9, 10427.
doi: 10.1021/acsami.6b15522
Dochter, A.; Garnier T.; Pardieu, E.; Chau, N. T. T.; Maerten, C.; Senger, B.; Schaaf, P.; Jierry, L.; Boulmedais, F. Langmuir 2015, 31, 10208.
doi: 10.1021/acs.langmuir.5b02749
Bianchi, R. C.; Silva, E. R. D.; Antonia, L. H. D.; Ferreira, F. F.; Alves, A. W. Langmuir 2014, 30, 11464.
doi: 10.1021/la502315m
Deng, T.; Wang, J.; Li, Y. Y.; Han, Z. H.; Peng, Y. N.; Zhang, J.; Gao, Z.; Gu, Y. Q.; Deng, D. W. ACS Appl. Mater. Interfaces 2018, 10, 27657.
doi: 10.1021/acsami.8b08512
Huang, X. H.; Jeong, Y. I.; Moon, B. K.; Zhang, L. D.; Kang, D. H.; Kim, I. Langmuir 2013, 29, 3223.
doi: 10.1021/la305069e
Bui, L.; Abbou, S.; Ibarboure, E.; Guidolin, N.; Staedel, C.; Toulme, J. J.; Schatz, C. J. Am. Chem. Soc. 2012, 134, 20189.
doi: 10.1021/ja310397j
Kumar, R. J.; Macdonald, J. M.; Singh, T. B.; Waddington, L. J.; Holmes, A. B. J. Am. Chem. Soc. 2011, 133, 8564.
doi: 10.1021/ja110858k
Zhang, Y.; Yin, Q.; Lu, H.; Xia, H.; Lin, Y.; Cheng, J. ACS Macro Lett. 2013, 2, 809.
doi: 10.1021/mz4003672
Shaikh, A. Y.; Das, S.; Pati, D.; Dhaware, V.; Sen, G. S.; Hotha, S. Biomacromolecules 2014, 15, 3679.
doi: 10.1021/bm5009537
Ramasamy, T.; Choi, J. Y.; Cho, H. J.; Umadevi, S. K.; Shin, B. S.; Choi, H. G.; Yong, C. S.; Kin, J. O. Pharm. Res. 2015, 32, 1947.
doi: 10.1007/s11095-014-1588-8
He, W.; Yan, J.; Jiang, W.; Li, S.; Qu, Y.; Niu, F.; Yan, Y.; Sui, F.; Wang, S.; Zhou, Y.; Jin, L.; Li, Y.; Ji, M.; Ma, P. X.; Liu, W.; Hou, P. Chem. Mater. 2018, 30, 7034.
doi: 10.1021/acs.chemmater.8b02572
Yan, J.; Korolev, N.; Eom, K. D.; Tam, J. P.; Nordenskiöld, L. Biomacromolecules 2012, 13, 124.
doi: 10.1021/bm201359r
Nishimura, T.; Yamada, A.; Umezaki, K.; Sawada, S. I.; Mukai, S. A.; Sasaki, Y.; Akiyoshi, K. Biomacromolecules 2017, 18, 3913.
doi: 10.1021/acs.biomac.7b00937
Ryu, K.; Lee, M.; Park, J.; Kim, T. ACS Appl. Bio. Mater. 2018, 1, 1496.
doi: 10.1021/acsabm.8b00428
Zhang, S.; Cai, C.-H.; Huang, Q.-J.; Lin, J.-P.; Xu, Z.-W. Acta Polym. Sin. 2018, 109(in Chinese).
doi: 10.11777/j.issn1000-3304.2018.17223
Hu, Y.; Lin, R.; Zhang, P.; Fern, J.; Cheetham, A. G.; Patel, K.; Schulman, R.; Kan, C.; Cui, H. ACS Nano 2015, 10, 880.
Schuster, N. J.; Hernández, S. R.; Bukharina, D.; Kotov, N. A.; Berova, N.; Nq, F.; Steiqerwald, M. L.; Nuckolls, C. J. Am. Chem. Soc. 2018, 140, 6235.
doi: 10.1021/jacs.8b03535
Nishiyma, N.; Okazaki, S.; Cabral, H.; Miyamto, M.; Kato, Y.; Suqiyama, Y.; Nishio, K.; Matsumura, Y.; Kataoka, K. Cancer Res. 2003, 63, 8977.
Lv, S.; Li, M.; Tang, Z.; Song, W.; Sun, H.; Liu, H.; Chen, X. Acta Biomater. 2013, 9, 9330.
doi: 10.1016/j.actbio.2013.08.015
Song, W.; Tang, Z.; Li, M.; Lv, M.; Sun, H.; Deng, M.; Liu, H.; Chen, X. Acta Biomater. 2014, 10, 1392.
doi: 10.1016/j.actbio.2013.11.026
Verbiest, T.; Elshocht, S. V.; Kauranen, M.; Hellemans, L.; Snauwaert, J.; Nuckolls, C.; Katz, T. J.; Persoons, A. Science 1999, 561, 913.
Fang, L.; Lin, W.-B.; Shen, Y.; Chen, C.-F. Chin. J. Org. Chem. 2018, 38, 541(in Chinese).
Kaseyama, T.; Furumi, S.; Zhang, X.; Takeuchi, M. Angew. Chem., Int. Ed. 2011, 123, 3768.
doi: 10.1002/ange.201007849
Hewlins, M, J, E.; Salter, R. Synthesis 2007, 2164.
Yao, Y.; Li, W. W.; Wang, S. B.; Yan, D. Y.; Chen, X. S. Macromol. Rapid Commun. 2006, 27, 2019.
doi: 10.1002/marc.200600447
Shihui Shi , Haoyu Li , Shaojie Han , Yifan Yao , Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002
Wenjian Zhang , Mengxin Fan , Wenwen Fei , Wei Bai . Cultivation of Critical Thinking Ability: Based on RAFT Polymerization-Induced Self-Assembly. University Chemistry, 2025, 40(4): 108-112. doi: 10.12461/PKU.DXHX202406099
Hongling Yuan , Jialin Xie , Jiawei Wang , Jixiang Zhao , Jiayan Liu , Qing Feng , Wei Qi , Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041
Lisha LEI , Wei YONG , Yiting CHENG , Yibo WANG , Wenchao HUANG , Junhuan ZHAO , Zhongjie ZHAI , Yangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202
Xiao SANG , Qi LIU , Jianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158
Caixia Lin , Ting Liu , Zhaojiang Shi , Hong Yan , Keyin Ye , Yaofeng Yuan . Innovative Experiment of Electrochemical Dearomative Spirocyclization of N-Acyl Sulfonamides. University Chemistry, 2025, 40(4): 359-366. doi: 10.12461/PKU.DXHX202406107
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
Zhuoming Liang , Ming Chen , Zhiwen Zheng , Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Zhenlin Zhou , Siyuan Chen , Yi Liu , Chengguo Hu , Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049
Rui Gao , Ying Zhou , Yifan Hu , Siyuan Chen , Shouhong Xu , Qianfu Luo , Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050
Tianqi Bai , Kun Huang , Fachen Liu , Ruochen Shi , Wencai Ren , Songfeng Pei , Peng Gao , Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024
Jiahao Lu , Xin Ming , Yingjun Liu , Yuanyuan Hao , Peijuan Zhang , Songhan Shi , Yi Mao , Yue Yu , Shengying Cai , Zhen Xu , Chao Gao . 基于稳态电热法的石墨烯膜导热系数的精确可靠测量. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-. doi: 10.1016/j.actphy.2025.100045
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
Hao BAI , Weizhi JI , Jinyan CHEN , Hongji LI , Mingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001
Tingbo Wang , Yao Luo , Bingyan Hu , Ruiyuan Liu , Jing Miao , Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082
(A) PEG45-b-PGlu10; (B) PEG45-b-PGlu24; (C) PEG45-b-PGlu36; (D) PEG45-b-PGlu50; (E) PEG45-b-PGlu71; (F) Me[4]H as a comparison
(A) 1:0.1; (B) 1:0.2; (C) 1:0.5; (D) 1:0.7; (E) 1:1.0
(A) 1:0.1; (B) 1:0.2; (C) 1:0.5; (D) 1:0.7; (E) 1:1.0
(A) pH=3.0; (B) pH=4.0; (C) pH=5.0; (D) pH=6.0; (E) pH=7.5; (F) pH=8.5