Citation: Lei Lu, Li Chengjing, Mo Dongliang. Recent Advances in Copper-Catalyzed N-O Cleavage Strategy[J]. Chinese Journal of Organic Chemistry, ;2019, 39(11): 2989-3012. doi: 10.6023/cjoc201904037 shu

Recent Advances in Copper-Catalyzed N-O Cleavage Strategy

  • Corresponding author: Mo Dongliang, moeastlight@mailbox.gxnu.edu.cn
  • Received Date: 14 April 2019
    Revised Date: 14 June 2019
    Available Online: 2 November 2019

    Fund Project: the "Overseas 100 Talents Program" of Guangxi Higher Education, the "One Thousand Young and Middle-Aged College and University Backbone Teachers Cultivation Program" of Guangxi Zhuang Autonomous Region, and the Natural Science Foundation of Guangxi Zhuang Autonomous Region 2016GXNSFFA380005Project supported by the "Overseas 100 Talents Program" of Guangxi Higher Education, the "One Thousand Young and Middle-Aged College and University Backbone Teachers Cultivation Program" of Guangxi Zhuang Autonomous Region, and the Natural Science Foundation of Guangxi Zhuang Autonomous Region (No. 2016GXNSFFA380005)

Figures(26)

  • N-O bond cleavage is one of the most efficient and powerful strategies to introduce N-or O-functional groups into molecules in organic synthesis. Copper catalyst, as the abundant in earth and inexpensive advantages has been widely used to construct C-N and C-O bond. Furthermore, N-O bond cleavage has been successfully applied in the total synthesis of natural products and pharmaceuticals. The new development of copper-catalyzed N-O bond cleavage and its application in the total synthesis of natural products and pharmaceuticals in recent years have been summarized.
  • 加载中
    1. [1]

      Bolotin, D. S.; Bokach, N. A.; Demakova, M. Y.; Kukushkin, V. Y. Chem.Rev. 2017, 117, 13039.  doi: 10.1021/acs.chemrev.7b00264

    2. [2]

      (a) Jiao, Y.-X.; Ma, X.-P.; Su, G.-F.; Mo, D.-L. Synthesis. 2017, 49, 933.
      (b) Chen, N.; Xie, J. Org. Biomol. Chem. 2016, 14, 11028.

    3. [3]

      (a) Shi, W.-M.; Ma, X.-P.; Su, G.-F.; Mo, D.-L. Org. Chem.Front. 2016, 3, 116.
      (b) Murahashi, S.-I.; Imada, Y. Chem. Rev. 2019, 119, 4684.

    4. [4]

      Lu, D.-F.; Zhu, C.-L.; Jia, Z.-X.; Xu, H. J. Am. Chem.Soc. 2014, 136, 13186.  doi: 10.1021/ja508057u

    5. [5]

      Senadi, G. C.; Lu, T.-Y.; Dhandabani, G. K.; Wang, J.-J. Org.Lett. 2017, 19, 1172.  doi: 10.1021/acs.orglett.7b00208

    6. [6]

      Neely, J. M.; Rovis, T. J. Am. Chem. Soc. 2013, 135, 66.  doi: 10.1021/ja3104389

    7. [7]

      Yeom, H.-S.; Shin, S. Acc. Chem. Res. 2014, 47, 966.  doi: 10.1021/ar4001839

    8. [8]

      (a) Yao, C.-Z.; Xiao, Z.-F.; Liu, J.; Ning, X.-S.; Kang, Y.-B. Org.Lett. 2014, 16, 2498.
      (b) Kumar, C. V. S.; Ramana, C. V. Org. Lett. 2015, 17, 2870.

    9. [9]

      (a) Zhou, J.; Shi, J.; Qi, Z.; Li, X.; Xu, H. E.; Yi, W. ACS Catal. 2015, 5, 6999.
      (b) Xia, J.; Yang, X.; Li, Y.; Li, X. Org. Lett. 2017, 19, 3242.

    10. [10]

      Nakamura, I.; Sato, Y.; Terada, M. J. Am.Chem. Soc. 2009, 131, 4198.  doi: 10.1021/ja900174t

    11. [11]

      Sivakumar, G.; Vijeta, A.; Jeganmohan, M. Chem.Eur. J. 2016, 22, 5899.  doi: 10.1002/chem.201600471

    12. [12]

      Liu, X.-G.; Gao, H.; Zhang, S.-S.; Li, Q.; Wang, H. ACS Catal. 2017, 7, 5078.  doi: 10.1021/acscatal.7b00677

    13. [13]

      (a) Yang, H.-B.; Pathipati, S. R.; Selander, N. ACS Catal. 2017, 7, 8441.
      (b) Ding, D.; Wang, C. ACS Catal. 2018, 8, 111324.

    14. [14]

      Tang, X.; Wu, W.; Zeng, W.; Jiang, H. Acc.Chem. Res. 2018, 51, 1092.  doi: 10.1021/acs.accounts.7b00611

    15. [15]

      (a) Ma, X.-P.; Liu, F.-P.; Mo, D.-L. Chin.J. Org. Chem. 2017, 37, 1069 (in Chinese).
      (b) Lu, Q.; Yi, H.; Lei, A. Acta Chim. Sinica 2015, 73, 1245.
      (c) Zhang, J.; Lu, Q.; Liu, C.; Lei, A. Chin. J. Org. Chem. 2015, 35, 743 (in Chinese).

    16. [16]

      (a) Ma, D.; Cai, Q. Acc. Chem. Res. 2008, 41, 1450.
      (b) McCann, S. D.; Stahl, S. S. Acc. Chem. Res. 2015, 48, 1756.

    17. [17]

      Dong, X.; Liu, Q.; Dong, Y.; Liu, H. Chem.Eur. J. 2017, 23, 2481.  doi: 10.1002/chem.201601607

    18. [18]

      Jiang, H.; Yang, J.; Tang, X.; Li, J.; Wu, W. J.Org. Chem. 2015, 80, 8763.  doi: 10.1021/acs.joc.5b01621

    19. [19]

      Fu, Y.; Wang, P.; Guo, X.; Wu, P.; Meng, X.; Chen, B. J. Org. Chem. 2016, 81, 11671.  doi: 10.1021/acs.joc.6b02081

    20. [20]

      Tan, W. W.; Ong, Y. J.; Yoshikai, N. Angew.Chem. Int. Ed. 2017, 56, 8240.  doi: 10.1002/anie.201704378

    21. [21]

      Bai, D.; Wang, X.; Zheng, G.; Li, X. Angew.Chem. Int. Ed. 2018, 57, 6633.  doi: 10.1002/anie.201802311

    22. [22]

      Jiang, H.; Yang, J.; Tang, X.; Wu, W. J. Org.Chem. 2016, 81, 2053.  doi: 10.1021/acs.joc.5b02914

    23. [23]

      Ramaraju, A.; Chouhan, N. K.; Ravi, O.; Sridhar, B.; Bathula, S. R. Eur. J. Org. Chem. 2018, 2963.

    24. [24]

      Huang, H.; Cai, J.; Ji, X.; Xiao, F.; Chen, Y.; Deng, G.-J. Angew. Chem. Int. Ed. 2016, 55, 307.  doi: 10.1002/anie.201508076

    25. [25]

      Zhao, B.; Liang, H.-W.; Yang, J.; Yang, Z.; Wei, Y. ACS Catal. 2017, 7, 5612.  doi: 10.1021/acscatal.7b01876

    26. [26]

      Zhu, C.; Zhu, R.; Zeng, H.; Chen, F.; Liu, C.; Wu, W.; Jiang, H. Angew. Chem. Int. Ed. 2017, 56, 13324.  doi: 10.1002/anie.201707719

    27. [27]

      Yang, J.; Zhao, B.; Xi, Y.; Sun, S.; Yang, Z.; Ye, Y.; Jiang, K.; Wei, Y. Org. Lett. 2018, 20, 1216.  doi: 10.1021/acs.orglett.8b00141

    28. [28]

      Xie, Y.; Li, Y.; Chen, X.; Liu, Y.; Zhang, W. Org.Chem. Front. 2018, 5, 1698.  doi: 10.1039/C8QO00204E

    29. [29]

      Dai, X.-J.; Engl, O. D.; León, T.; Buchwald, S. L. Angew. Chem. Int. Ed. 2019, 58, 3407.  doi: 10.1002/anie.201814331

    30. [30]

      Zhao, B.; Shi, Z. Angew. Chem. Int.Ed. 2017, 56, 12727.  doi: 10.1002/anie.201707181

    31. [31]

      Ai, W.; Liu, Y.; Wang, Q.; Lu, Z.; Liu, Q. Org.Lett. 2018, 20, 409.  doi: 10.1021/acs.orglett.7b03707

    32. [32]

      Zhu, C.; Chen, F.; Liu, C.; Zeng, H.; Yang, Z.; Wu, W.; Jiang, H. J. Org. Chem. 2018, 83, 14713.  doi: 10.1021/acs.joc.8b02103

    33. [33]

      An, Z.; Jiang, Y.; Guan, X.; Yan, R. Chem.Commun. 2018, 54, 10738.  doi: 10.1039/C8CC06256K

    34. [34]

      Wu, J.; Zhang, J.-Y.; Gao, P.; Xu, S.-L.; Guo, L.-N. J. Org. Chem. 2018, 83, 1046.  doi: 10.1021/acs.joc.7b02714

    35. [35]

      He, M.; Yan, Z..; Zhu, F.; Lin, S. J. Org.Chem. 2018, 83, 15438.  doi: 10.1021/acs.joc.8b02707

    36. [36]

      Yu, X.-Y.; Zhao, Q.-Q.; Chen, J.; Chen, J.-R.; Xiao, W.-J. Angew. Chem. Int. Ed. 2018, 57, 15505.  doi: 10.1002/anie.201809820

    37. [37]

      Wang, P.; Zhao, B.; Yuan, Y.; Shi, Z. Chem.Commun. 2019, 55, 1971.  doi: 10.1039/C8CC10109D

    38. [38]

      He, Y.; Lou, J.; Wu, K.; Wang, H.; Yu, Z. J.Org. Chem. 2019, 84, 2178.  doi: 10.1021/acs.joc.8b03175

    39. [39]

      Min, Q.-Q.; Li, N.; Chen, G.-L.; Liu, F. Org.Chem. Front. 2019, 6, 1200.  doi: 10.1039/C9QO00235A

    40. [40]

      Tang, X.; Zhu, Z.; Qi, C.; Wu, W.; Jiang, H. Org.Lett. 2016, 18, 180.  doi: 10.1021/acs.orglett.5b03188

    41. [41]

      Tang, X.; Yan, J.; Zhu, Z.; Zheng, M.; Wu, W.; Jiang, H. J. Org. Chem. 2016, 81, 11461.  doi: 10.1021/acs.joc.6b02124

    42. [42]

      Zhu, Z.; Tang, X.; Cen, J.; Li, J.; Wu, W.; Jiang, H. Chem. Commun. 2018, 54, 3767.  doi: 10.1039/C8CC00445E

    43. [43]

      Zhou, P.; Huang, Y.; Wu, W.; Yu, W.; Li, J.; Zhu, Z.; Jiang, H. Org. Biomol. Chem. 2019, 17, 3424.  doi: 10.1039/C9OB00377K

    44. [44]

      Liu, H.; Yan, X.; Chen, C.; Liu, Q.; Xi, C. Chem.Commun. 2013, 49, 5513.  doi: 10.1039/c3cc41574k

    45. [45]

      Zhu, Z.; Tang, X.; Li, J.; Li, X.; Wu, W.; Deng, G.; Jiang, H. Chem. Commun. 2017, 53, 3228  doi: 10.1039/C7CC00260B

    46. [46]

      Yang, H.-B.; Selander, N. Org. Biomol.Chem. 2017, 15, 1771.  doi: 10.1039/C7OB00203C

    47. [47]

      Xu, L.-L.; Wang, X.; Ma, B.; Yin, M.-X.; Lin, H.-X.; Dai, H.-X.; Yu, J.-Q. Chem. Sci., 2018, 9, 5160.  doi: 10.1039/C8SC01256C

    48. [48]

      Ren, Z.-H.; Zhao, M.-N.; Yi, Y.; Wang, Y.-Y.; Guan, Z.-H. Synthesis 2016, 48, 1920.  doi: 10.1055/s-0035-1561950

    49. [49]

      Zhu, C.; Zeng, H.; Chen, F.; Liu, C.; Zhu, R.; Wu, W.; Jiang, H. Org. Chem. Front. 2018, 5, 571.  doi: 10.1039/C7QO00874K

    50. [50]

      Ke, J.; Tang, Y.; Yi, H.; Li, Y.; Cheng, Y.; Liu, C.; Lei, A. Angew. Chem. Int. Ed. 2015, 54, 6604.  doi: 10.1002/anie.201501287

    51. [51]

      Reidl, T. W.; Son, J.; Wink, D. J.; Anderson, L. L. Angew. Chem. Int. Ed. 2017, 56, 11579.  doi: 10.1002/anie.201705681

    52. [52]

      He, M.; Yan, Z.; Wang, W.; Zhu, F.; Lin, S. Tetrahedron Lett. 2018, 59, 3706.  doi: 10.1016/j.tetlet.2018.09.007

    53. [53]

      Mo, D.-L.; Anderson, L. L. Angew. Chem. 2013, 52, 6722.  doi: 10.1002/anie.201301963

    54. [54]

      Yan, H.; Wang, H.; Li, X..; Xin, X.; Wang, C.; Wan, B. Angew. Chem. Int. Ed. 2015, 54, 10613.  doi: 10.1002/anie.201503997

    55. [55]

      Wolosewicz, K.; Michalak, M.; Adamek, J.; Furman, B. Eur. J. Org. Chem. 2016, 2212.
       

    56. [56]

      Son, J.; Kim, K. H.; Mo, D.-L.; Wink, D. J.; Anderson, L. L. Angew. Chem. Int. Ed. 2017, 56, 3059.  doi: 10.1002/anie.201611791

    57. [57]

      Kong, Y.; Liu, Y.; Wang, B.; Li, S.; Liu, L.; Chang, X.; Li, J. Adv. Synth. Catal. 2018, 360, 1240.  doi: 10.1002/adsc.201701476

    58. [58]

      Hasegawa, M.; Nomoto, A.; Soeta, T.; Ukaji, Y. Chem.Lett. 2017, 46, 45.  doi: 10.1246/cl.160821

    59. [59]

      Shen, W.-B.; Sun, Q.; Li, L.; Liu, X.; Zhou, B.; Yan, J.-Z.; Lu, X.; Ye, L.-W. Nat. Commun. 2017, 8, 1748.  doi: 10.1038/s41467-017-01853-1

    60. [60]

      Liu, X.; Zhang, Z.-X.; Zhou, B.; Wang, Z.-S.; Zheng, R.-H.; Ye, L.-W. Org. Biomol. Chem. 2017, 15, 10156.  doi: 10.1039/C7OB02728A

    61. [61]

      Wang, Z.; Han, M.-Y.; Li, P.; Wang, L. Eur.J. Org. Chem. 2018, 5954.

    62. [62]

      Tian, Z.; Xu, J.; Liu, B.; Tan, Q.; Xu, B. Org.Lett. 2018, 20, 2603.  doi: 10.1021/acs.orglett.8b00798

    63. [63]

      Zou, N.; Jiao, J.-W.; Feng, Y.; Pan, C.-X.; Liang, C.; Su, G.-F.; Mo, D.-L. Org. Lett. 2019, 21, 481.  doi: 10.1021/acs.orglett.8b03767

    64. [64]

      Ma, X.-P.; Li, L.-G.; Zhao, H.-P.; Du, M.; Liang, C.; Mo, D.-L. Org. Lett. 2018, 20, 4571.  doi: 10.1021/acs.orglett.8b01761

    65. [65]

      Hu, F.; Szostak, M. Adv. Synth. Catal. 2015, 357, 2583.  doi: 10.1002/adsc.201500319

    66. [66]

      Li, L.; Tan, T.-D.; Zhang, Y.-Q.; Liu, X.; Ye, L.-W. Org. Biomol.Chem. 2017, 15, 8483.  doi: 10.1039/C7OB01895A

    67. [67]

      Li, L.; Wang, H.; Yu, S.; Wang, X.; Li, X. Org.Lett. 2016, 18, 3662.  doi: 10.1021/acs.orglett.6b01716

    68. [68]

      Biswas, A.; Karmakar, U.; Nandi, S.; Samanta, R.J. Org. Chem. 2017, 82, 8933.  doi: 10.1021/acs.joc.7b01343

    69. [69]

      Guo, S. Yang, C. J.; Buchwald, S. L. J. Am.Chem. Soc. 2018, 140, 15976.  doi: 10.1021/jacs.8b10564

    70. [70]

      Xie, F.; Shen, B.; Li, X. Org. Lett. 2018, 20, 7154.  doi: 10.1021/acs.orglett.8b03093

    71. [71]

      Wang, F.; Xu, P.; Wang, S.-Y.; Ji, S.-J. Org. Lett. 2018, 20, 2204.  doi: 10.1021/acs.orglett.8b00525

    72. [72]

      Sheng, J.; He, R.; Xue, J.; Wu, C.; Qiao, J.; Chen, C. Org. Lett. 2018, 20, 4458.  doi: 10.1021/acs.orglett.8b01748

    73. [73]

      Galenko, E. E.; Novikov, M. S.; Shakirova, F. M.; Shakirova, J. R.; Kornyakov, I. V.; Bodunov, V. A.; Khlebnikov, A. F. J.Org. Chem. 2019, 84, 3524.  doi: 10.1021/acs.joc.9b00115

    74. [74]

      Nakamura, I.; Iwata, T.; Zhang, D.; Terada, M. Org.Lett. 2012, 14, 206.  doi: 10.1021/ol203001w

    75. [75]

      Nakamura, I.; Kudo, Y.; Terada, M. Angew. Chem. Int. Ed. 2013, 52, 7536.  doi: 10.1002/anie.201302751

    76. [76]

      Nakamera, I.; Ishida, Y.; Terada, M. Org. Lett. 2014, 16, 2562.
       

    77. [77]

      Zhang, D.; Nakamura, I.; Terada, M. Org. Lett. 2014, 16, 5184.  doi: 10.1021/ol502541w

    78. [78]

      Nakamura, I.; Onuma, T.; Zhang, D.; Terada, M. Tetrahedron Lett. 2014, 55, 1178.  doi: 10.1016/j.tetlet.2013.12.105

    79. [79]

      Hazra, S.; Mondal, B.; Rahaman, H.; Roy, B. Eur.J. Org. Chem. 2014, 2806.
       

    80. [80]

      Zhou, S.; Yang, Z.; Chen, X.; Li, Y.; Zhang, L.; Fang, H.; Wang, W.; Zhu, X.; Wang, S. J. Org. Chem. 2015, 80, 6323.  doi: 10.1021/acs.joc.5b00767

    81. [81]

      Sakae, R.; Hirano, k.; Satoh, T.; Miura, M. Angew.Chem. Int. Ed. 2015, 54, 613.

    82. [82]

      Sakae, R.; Hirano, K.; Miura, M. J. Am.Chem. Soc. 2015, 137, 6460.  doi: 10.1021/jacs.5b02775

    83. [83]

      Hemric, B. N.; Shen, K.; Wang, Q. J. Am.Chem. Soc. 2016, 138, 5813.  doi: 10.1021/jacs.6b02840

    84. [84]

      Nakamura, I.; Jo, T.; Ishida, Y.; Tashiro, H.; Terada, M. Org. Lett. 2017, 19, 3059.  doi: 10.1021/acs.orglett.7b01110

    85. [85]

      Xu, Q.-F.; Liu, Q.-Q.; Zhang, X.; You, S.-L. Angew.Chem. Int. Ed. 2018, 57, 15204.  doi: 10.1002/anie.201809003

    86. [86]

      Ichikawa, S.; Zhu, S.; Buchwald, S. L. Angew. Chem. Int. Ed. 2018, 57, 8714.  doi: 10.1002/anie.201803026

    87. [87]

      Ishida, Y.; Nakamura, I.; Terada, M. J. Am.Chem. Soc. 2018, 140, 8629.  doi: 10.1021/jacs.8b03669

    88. [88]

      Wu, F.; Zhang, M.; Zhou, W.; Chen, W.; Liu, M.; Wu, H. J. Org. Chem. 2018, 83, 5999.  doi: 10.1021/acs.joc.8b00605

    89. [89]

      Yang, Z.; Jiang, K.; Chen, Y.-C.; Wei, Y. J.Org. Chem. 2019, 84, 3725.  doi: 10.1021/acs.joc.9b00262

    90. [90]

      Wang, Q.; Li, X. Org. Lett. 2016, 18, 2102.  doi: 10.1021/acs.orglett.6b00727

    91. [91]

      Śnieżek, M.; Stecko, S.; Panfil, I.; Furman, B.; Chmielewski, M. J. Org. Chem. 2013, 78, 7048.  doi: 10.1021/jo400807c

    92. [92]

      Diethelm, S.; Carreira, E. M. J. Am.Chem. Soc. 2015, 137, 6084.  doi: 10.1021/jacs.5b02574

    93. [93]

      Wang, F.-X.; Du, J.-Y.; Wang, H.-B.; Zhang, P.-L.; Zhang, G.-B.; Yu, K.-Y.; Zhang, X.-Z.; An, X.-T.; Cao, Y.-X.; Fan, C.-A.J. Am. Chem. Soc. 2017, 139, 4282.  doi: 10.1021/jacs.6b13401

    94. [94]

      Nomura, T.; Yojoshima, T.; Fukuyama, T. Org.Lett. 2018, 20, 119.  doi: 10.1021/acs.orglett.7b03555

  • 加载中
    1. [1]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    2. [2]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    3. [3]

      Tongyan Yu Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070

    4. [4]

      Xinxin Wu . 基础有机化学教学中自由基重排反应的课程设计及其课程思政元素的融入. University Chemistry, 2025, 40(6): 316-325. doi: 10.12461/PKU.DXHX202408055

    5. [5]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    6. [6]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    7. [7]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    8. [8]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    9. [9]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    10. [10]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    11. [11]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    12. [12]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    13. [13]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    14. [14]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    15. [15]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    16. [16]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    17. [17]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    18. [18]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    19. [19]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    20. [20]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

Metrics
  • PDF Downloads(72)
  • Abstract views(8711)
  • HTML views(949)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return