Recent Advances in Copper-Catalyzed N-O Cleavage Strategy
- Corresponding author: Mo Dongliang, moeastlight@mailbox.gxnu.edu.cn
Citation:
Lei Lu, Li Chengjing, Mo Dongliang. Recent Advances in Copper-Catalyzed N-O Cleavage Strategy[J]. Chinese Journal of Organic Chemistry,
;2019, 39(11): 2989-3012.
doi:
10.6023/cjoc201904037
Bolotin, D. S.; Bokach, N. A.; Demakova, M. Y.; Kukushkin, V. Y. Chem.Rev. 2017, 117, 13039.
doi: 10.1021/acs.chemrev.7b00264
(a) Jiao, Y.-X.; Ma, X.-P.; Su, G.-F.; Mo, D.-L. Synthesis. 2017, 49, 933.
(b) Chen, N.; Xie, J. Org. Biomol. Chem. 2016, 14, 11028.
(a) Shi, W.-M.; Ma, X.-P.; Su, G.-F.; Mo, D.-L. Org. Chem.Front. 2016, 3, 116.
(b) Murahashi, S.-I.; Imada, Y. Chem. Rev. 2019, 119, 4684.
Lu, D.-F.; Zhu, C.-L.; Jia, Z.-X.; Xu, H. J. Am. Chem.Soc. 2014, 136, 13186.
doi: 10.1021/ja508057u
Senadi, G. C.; Lu, T.-Y.; Dhandabani, G. K.; Wang, J.-J. Org.Lett. 2017, 19, 1172.
doi: 10.1021/acs.orglett.7b00208
Neely, J. M.; Rovis, T. J. Am. Chem. Soc. 2013, 135, 66.
doi: 10.1021/ja3104389
Yeom, H.-S.; Shin, S. Acc. Chem. Res. 2014, 47, 966.
doi: 10.1021/ar4001839
(a) Yao, C.-Z.; Xiao, Z.-F.; Liu, J.; Ning, X.-S.; Kang, Y.-B. Org.Lett. 2014, 16, 2498.
(b) Kumar, C. V. S.; Ramana, C. V. Org. Lett. 2015, 17, 2870.
(a) Zhou, J.; Shi, J.; Qi, Z.; Li, X.; Xu, H. E.; Yi, W. ACS Catal. 2015, 5, 6999.
(b) Xia, J.; Yang, X.; Li, Y.; Li, X. Org. Lett. 2017, 19, 3242.
Nakamura, I.; Sato, Y.; Terada, M. J. Am.Chem. Soc. 2009, 131, 4198.
doi: 10.1021/ja900174t
Sivakumar, G.; Vijeta, A.; Jeganmohan, M. Chem.Eur. J. 2016, 22, 5899.
doi: 10.1002/chem.201600471
Liu, X.-G.; Gao, H.; Zhang, S.-S.; Li, Q.; Wang, H. ACS Catal. 2017, 7, 5078.
doi: 10.1021/acscatal.7b00677
(a) Yang, H.-B.; Pathipati, S. R.; Selander, N. ACS Catal. 2017, 7, 8441.
(b) Ding, D.; Wang, C. ACS Catal. 2018, 8, 111324.
Tang, X.; Wu, W.; Zeng, W.; Jiang, H. Acc.Chem. Res. 2018, 51, 1092.
doi: 10.1021/acs.accounts.7b00611
(a) Ma, X.-P.; Liu, F.-P.; Mo, D.-L. Chin.J. Org. Chem. 2017, 37, 1069 (in Chinese).
(b) Lu, Q.; Yi, H.; Lei, A. Acta Chim. Sinica 2015, 73, 1245.
(c) Zhang, J.; Lu, Q.; Liu, C.; Lei, A. Chin. J. Org. Chem. 2015, 35, 743 (in Chinese).
(a) Ma, D.; Cai, Q. Acc. Chem. Res. 2008, 41, 1450.
(b) McCann, S. D.; Stahl, S. S. Acc. Chem. Res. 2015, 48, 1756.
Dong, X.; Liu, Q.; Dong, Y.; Liu, H. Chem.Eur. J. 2017, 23, 2481.
doi: 10.1002/chem.201601607
Jiang, H.; Yang, J.; Tang, X.; Li, J.; Wu, W. J.Org. Chem. 2015, 80, 8763.
doi: 10.1021/acs.joc.5b01621
Fu, Y.; Wang, P.; Guo, X.; Wu, P.; Meng, X.; Chen, B. J. Org. Chem. 2016, 81, 11671.
doi: 10.1021/acs.joc.6b02081
Tan, W. W.; Ong, Y. J.; Yoshikai, N. Angew.Chem. Int. Ed. 2017, 56, 8240.
doi: 10.1002/anie.201704378
Bai, D.; Wang, X.; Zheng, G.; Li, X. Angew.Chem. Int. Ed. 2018, 57, 6633.
doi: 10.1002/anie.201802311
Jiang, H.; Yang, J.; Tang, X.; Wu, W. J. Org.Chem. 2016, 81, 2053.
doi: 10.1021/acs.joc.5b02914
Ramaraju, A.; Chouhan, N. K.; Ravi, O.; Sridhar, B.; Bathula, S. R. Eur. J. Org. Chem. 2018, 2963.
Huang, H.; Cai, J.; Ji, X.; Xiao, F.; Chen, Y.; Deng, G.-J. Angew. Chem. Int. Ed. 2016, 55, 307.
doi: 10.1002/anie.201508076
Zhao, B.; Liang, H.-W.; Yang, J.; Yang, Z.; Wei, Y. ACS Catal. 2017, 7, 5612.
doi: 10.1021/acscatal.7b01876
Zhu, C.; Zhu, R.; Zeng, H.; Chen, F.; Liu, C.; Wu, W.; Jiang, H. Angew. Chem. Int. Ed. 2017, 56, 13324.
doi: 10.1002/anie.201707719
Yang, J.; Zhao, B.; Xi, Y.; Sun, S.; Yang, Z.; Ye, Y.; Jiang, K.; Wei, Y. Org. Lett. 2018, 20, 1216.
doi: 10.1021/acs.orglett.8b00141
Xie, Y.; Li, Y.; Chen, X.; Liu, Y.; Zhang, W. Org.Chem. Front. 2018, 5, 1698.
doi: 10.1039/C8QO00204E
Dai, X.-J.; Engl, O. D.; León, T.; Buchwald, S. L. Angew. Chem. Int. Ed. 2019, 58, 3407.
doi: 10.1002/anie.201814331
Zhao, B.; Shi, Z. Angew. Chem. Int.Ed. 2017, 56, 12727.
doi: 10.1002/anie.201707181
Ai, W.; Liu, Y.; Wang, Q.; Lu, Z.; Liu, Q. Org.Lett. 2018, 20, 409.
doi: 10.1021/acs.orglett.7b03707
Zhu, C.; Chen, F.; Liu, C.; Zeng, H.; Yang, Z.; Wu, W.; Jiang, H. J. Org. Chem. 2018, 83, 14713.
doi: 10.1021/acs.joc.8b02103
An, Z.; Jiang, Y.; Guan, X.; Yan, R. Chem.Commun. 2018, 54, 10738.
doi: 10.1039/C8CC06256K
Wu, J.; Zhang, J.-Y.; Gao, P.; Xu, S.-L.; Guo, L.-N. J. Org. Chem. 2018, 83, 1046.
doi: 10.1021/acs.joc.7b02714
He, M.; Yan, Z..; Zhu, F.; Lin, S. J. Org.Chem. 2018, 83, 15438.
doi: 10.1021/acs.joc.8b02707
Yu, X.-Y.; Zhao, Q.-Q.; Chen, J.; Chen, J.-R.; Xiao, W.-J. Angew. Chem. Int. Ed. 2018, 57, 15505.
doi: 10.1002/anie.201809820
Wang, P.; Zhao, B.; Yuan, Y.; Shi, Z. Chem.Commun. 2019, 55, 1971.
doi: 10.1039/C8CC10109D
He, Y.; Lou, J.; Wu, K.; Wang, H.; Yu, Z. J.Org. Chem. 2019, 84, 2178.
doi: 10.1021/acs.joc.8b03175
Min, Q.-Q.; Li, N.; Chen, G.-L.; Liu, F. Org.Chem. Front. 2019, 6, 1200.
doi: 10.1039/C9QO00235A
Tang, X.; Zhu, Z.; Qi, C.; Wu, W.; Jiang, H. Org.Lett. 2016, 18, 180.
doi: 10.1021/acs.orglett.5b03188
Tang, X.; Yan, J.; Zhu, Z.; Zheng, M.; Wu, W.; Jiang, H. J. Org. Chem. 2016, 81, 11461.
doi: 10.1021/acs.joc.6b02124
Zhu, Z.; Tang, X.; Cen, J.; Li, J.; Wu, W.; Jiang, H. Chem. Commun. 2018, 54, 3767.
doi: 10.1039/C8CC00445E
Zhou, P.; Huang, Y.; Wu, W.; Yu, W.; Li, J.; Zhu, Z.; Jiang, H. Org. Biomol. Chem. 2019, 17, 3424.
doi: 10.1039/C9OB00377K
Liu, H.; Yan, X.; Chen, C.; Liu, Q.; Xi, C. Chem.Commun. 2013, 49, 5513.
doi: 10.1039/c3cc41574k
Zhu, Z.; Tang, X.; Li, J.; Li, X.; Wu, W.; Deng, G.; Jiang, H. Chem. Commun. 2017, 53, 3228
doi: 10.1039/C7CC00260B
Yang, H.-B.; Selander, N. Org. Biomol.Chem. 2017, 15, 1771.
doi: 10.1039/C7OB00203C
Xu, L.-L.; Wang, X.; Ma, B.; Yin, M.-X.; Lin, H.-X.; Dai, H.-X.; Yu, J.-Q. Chem. Sci., 2018, 9, 5160.
doi: 10.1039/C8SC01256C
Ren, Z.-H.; Zhao, M.-N.; Yi, Y.; Wang, Y.-Y.; Guan, Z.-H. Synthesis 2016, 48, 1920.
doi: 10.1055/s-0035-1561950
Zhu, C.; Zeng, H.; Chen, F.; Liu, C.; Zhu, R.; Wu, W.; Jiang, H. Org. Chem. Front. 2018, 5, 571.
doi: 10.1039/C7QO00874K
Ke, J.; Tang, Y.; Yi, H.; Li, Y.; Cheng, Y.; Liu, C.; Lei, A. Angew. Chem. Int. Ed. 2015, 54, 6604.
doi: 10.1002/anie.201501287
Reidl, T. W.; Son, J.; Wink, D. J.; Anderson, L. L. Angew. Chem. Int. Ed. 2017, 56, 11579.
doi: 10.1002/anie.201705681
He, M.; Yan, Z.; Wang, W.; Zhu, F.; Lin, S. Tetrahedron Lett. 2018, 59, 3706.
doi: 10.1016/j.tetlet.2018.09.007
Mo, D.-L.; Anderson, L. L. Angew. Chem. 2013, 52, 6722.
doi: 10.1002/anie.201301963
Yan, H.; Wang, H.; Li, X..; Xin, X.; Wang, C.; Wan, B. Angew. Chem. Int. Ed. 2015, 54, 10613.
doi: 10.1002/anie.201503997
Wolosewicz, K.; Michalak, M.; Adamek, J.; Furman, B. Eur. J. Org. Chem. 2016, 2212.
Son, J.; Kim, K. H.; Mo, D.-L.; Wink, D. J.; Anderson, L. L. Angew. Chem. Int. Ed. 2017, 56, 3059.
doi: 10.1002/anie.201611791
Kong, Y.; Liu, Y.; Wang, B.; Li, S.; Liu, L.; Chang, X.; Li, J. Adv. Synth. Catal. 2018, 360, 1240.
doi: 10.1002/adsc.201701476
Hasegawa, M.; Nomoto, A.; Soeta, T.; Ukaji, Y. Chem.Lett. 2017, 46, 45.
doi: 10.1246/cl.160821
Shen, W.-B.; Sun, Q.; Li, L.; Liu, X.; Zhou, B.; Yan, J.-Z.; Lu, X.; Ye, L.-W. Nat. Commun. 2017, 8, 1748.
doi: 10.1038/s41467-017-01853-1
Liu, X.; Zhang, Z.-X.; Zhou, B.; Wang, Z.-S.; Zheng, R.-H.; Ye, L.-W. Org. Biomol. Chem. 2017, 15, 10156.
doi: 10.1039/C7OB02728A
Wang, Z.; Han, M.-Y.; Li, P.; Wang, L. Eur.J. Org. Chem. 2018, 5954.
Tian, Z.; Xu, J.; Liu, B.; Tan, Q.; Xu, B. Org.Lett. 2018, 20, 2603.
doi: 10.1021/acs.orglett.8b00798
Zou, N.; Jiao, J.-W.; Feng, Y.; Pan, C.-X.; Liang, C.; Su, G.-F.; Mo, D.-L. Org. Lett. 2019, 21, 481.
doi: 10.1021/acs.orglett.8b03767
Ma, X.-P.; Li, L.-G.; Zhao, H.-P.; Du, M.; Liang, C.; Mo, D.-L. Org. Lett. 2018, 20, 4571.
doi: 10.1021/acs.orglett.8b01761
Hu, F.; Szostak, M. Adv. Synth. Catal. 2015, 357, 2583.
doi: 10.1002/adsc.201500319
Li, L.; Tan, T.-D.; Zhang, Y.-Q.; Liu, X.; Ye, L.-W. Org. Biomol.Chem. 2017, 15, 8483.
doi: 10.1039/C7OB01895A
Li, L.; Wang, H.; Yu, S.; Wang, X.; Li, X. Org.Lett. 2016, 18, 3662.
doi: 10.1021/acs.orglett.6b01716
Biswas, A.; Karmakar, U.; Nandi, S.; Samanta, R.J. Org. Chem. 2017, 82, 8933.
doi: 10.1021/acs.joc.7b01343
Guo, S. Yang, C. J.; Buchwald, S. L. J. Am.Chem. Soc. 2018, 140, 15976.
doi: 10.1021/jacs.8b10564
Xie, F.; Shen, B.; Li, X. Org. Lett. 2018, 20, 7154.
doi: 10.1021/acs.orglett.8b03093
Wang, F.; Xu, P.; Wang, S.-Y.; Ji, S.-J. Org. Lett. 2018, 20, 2204.
doi: 10.1021/acs.orglett.8b00525
Sheng, J.; He, R.; Xue, J.; Wu, C.; Qiao, J.; Chen, C. Org. Lett. 2018, 20, 4458.
doi: 10.1021/acs.orglett.8b01748
Galenko, E. E.; Novikov, M. S.; Shakirova, F. M.; Shakirova, J. R.; Kornyakov, I. V.; Bodunov, V. A.; Khlebnikov, A. F. J.Org. Chem. 2019, 84, 3524.
doi: 10.1021/acs.joc.9b00115
Nakamura, I.; Iwata, T.; Zhang, D.; Terada, M. Org.Lett. 2012, 14, 206.
doi: 10.1021/ol203001w
Nakamura, I.; Kudo, Y.; Terada, M. Angew. Chem. Int. Ed. 2013, 52, 7536.
doi: 10.1002/anie.201302751
Nakamera, I.; Ishida, Y.; Terada, M. Org. Lett. 2014, 16, 2562.
Zhang, D.; Nakamura, I.; Terada, M. Org. Lett. 2014, 16, 5184.
doi: 10.1021/ol502541w
Nakamura, I.; Onuma, T.; Zhang, D.; Terada, M. Tetrahedron Lett. 2014, 55, 1178.
doi: 10.1016/j.tetlet.2013.12.105
Hazra, S.; Mondal, B.; Rahaman, H.; Roy, B. Eur.J. Org. Chem. 2014, 2806.
Zhou, S.; Yang, Z.; Chen, X.; Li, Y.; Zhang, L.; Fang, H.; Wang, W.; Zhu, X.; Wang, S. J. Org. Chem. 2015, 80, 6323.
doi: 10.1021/acs.joc.5b00767
Sakae, R.; Hirano, k.; Satoh, T.; Miura, M. Angew.Chem. Int. Ed. 2015, 54, 613.
Sakae, R.; Hirano, K.; Miura, M. J. Am.Chem. Soc. 2015, 137, 6460.
doi: 10.1021/jacs.5b02775
Hemric, B. N.; Shen, K.; Wang, Q. J. Am.Chem. Soc. 2016, 138, 5813.
doi: 10.1021/jacs.6b02840
Nakamura, I.; Jo, T.; Ishida, Y.; Tashiro, H.; Terada, M. Org. Lett. 2017, 19, 3059.
doi: 10.1021/acs.orglett.7b01110
Xu, Q.-F.; Liu, Q.-Q.; Zhang, X.; You, S.-L. Angew.Chem. Int. Ed. 2018, 57, 15204.
doi: 10.1002/anie.201809003
Ichikawa, S.; Zhu, S.; Buchwald, S. L. Angew. Chem. Int. Ed. 2018, 57, 8714.
doi: 10.1002/anie.201803026
Ishida, Y.; Nakamura, I.; Terada, M. J. Am.Chem. Soc. 2018, 140, 8629.
doi: 10.1021/jacs.8b03669
Wu, F.; Zhang, M.; Zhou, W.; Chen, W.; Liu, M.; Wu, H. J. Org. Chem. 2018, 83, 5999.
doi: 10.1021/acs.joc.8b00605
Yang, Z.; Jiang, K.; Chen, Y.-C.; Wei, Y. J.Org. Chem. 2019, 84, 3725.
doi: 10.1021/acs.joc.9b00262
Wang, Q.; Li, X. Org. Lett. 2016, 18, 2102.
doi: 10.1021/acs.orglett.6b00727
Śnieżek, M.; Stecko, S.; Panfil, I.; Furman, B.; Chmielewski, M. J. Org. Chem. 2013, 78, 7048.
doi: 10.1021/jo400807c
Diethelm, S.; Carreira, E. M. J. Am.Chem. Soc. 2015, 137, 6084.
doi: 10.1021/jacs.5b02574
Wang, F.-X.; Du, J.-Y.; Wang, H.-B.; Zhang, P.-L.; Zhang, G.-B.; Yu, K.-Y.; Zhang, X.-Z.; An, X.-T.; Cao, Y.-X.; Fan, C.-A.J. Am. Chem. Soc. 2017, 139, 4282.
doi: 10.1021/jacs.6b13401
Nomura, T.; Yojoshima, T.; Fukuyama, T. Org.Lett. 2018, 20, 119.
doi: 10.1021/acs.orglett.7b03555
Renxiao Liang , Zhe Zhong , Zhangling Jin , Lijuan Shi , Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024
Pengzi Wang , Wenjing Xiao , Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090
Tongyan Yu , Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070
Xinxin Wu . 基础有机化学教学中自由基重排反应的课程设计及其课程思政元素的融入. University Chemistry, 2025, 40(6): 316-325. doi: 10.12461/PKU.DXHX202408055
Yuting Zhang , Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037
Lili Jiang , Shaoyu Zheng , Xuejiao Liu , Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004
Yue Zhao , Yanfei Li , Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001
Tingbo Wang , Yao Luo , Bingyan Hu , Ruiyuan Liu , Jing Miao , Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082
Jiabo Huang , Quanxin Li , Zhongyan Cao , Li Dang , Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
Chi Li , Jichao Wan , Qiyu Long , Hui Lv , Ying Xiong . N-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016
Ke QIAO , Yanlin LI , Shengli HUANG , Guoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
Geyang Song , Dong Xue , Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030
Jiaming Xu , Yu Xiang , Weisheng Lin , Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
Yanan Liu , Yufei He , Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081
Feng Han , Fuxian Wan , Ying Li , Congcong Zhang , Yuanhong Zhang , Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181