Citation: Liu Ruiting, Li Zhen, Wang Shengke, Zhou Xigeng. Pd(OAc)2/CuI-Catalyzed Tandem Reaction for Synthesis of Polysubstituted 3-Chalcogenylindoles[J]. Chinese Journal of Organic Chemistry, ;2019, 39(11): 3215-3222. doi: 10.6023/cjoc201904032 shu

Pd(OAc)2/CuI-Catalyzed Tandem Reaction for Synthesis of Polysubstituted 3-Chalcogenylindoles

  • Corresponding author: Zhou Xigeng, xgzhou@fudan.edu.cn
  • Received Date: 12 April 2019
    Revised Date: 18 June 2019
    Available Online: 2 November 2019

    Fund Project: the National Natural Science Foundation of China 21732007the National Natural Science Foundation of China 21572034the National Natural Science Foundation of China 21871054Project supported by the National Natural Science Foundation of China (Nos. 21572034, 21732007, 21871054)

Figures(5)

  • Tandem Pd(OAc)2/CuI catalyzed coupling/cyclization/chalcogenylation reaction of gem-dibromovinylanilines with boronic acids and dichalcogenides has been developed, which provides a new synthetic approach to 3-sulfenyl-and 3-selenylindoles. Various functional groups such as methoxyl, halides and trifluoromethyl groups in the substrates are tolerated.
  • 加载中
    1. [1]

      (a) Stempel, E.; Gaich, T. Acc. Chem. Res. 2016, 49, 2390.
      (b) Sundberg, R. L. Indoles, Academic Press, London, 1996.
      (c) Katritzky, A. R.; Pozharskii, A. F. Handbook of Heterocyclic Chemistry, Pergamon, Oxford, 2000.
      (d) Gribble, G. W. J. Chem. Soc., Perkin Trans. 1 2000, 1045.
      (e) Kochanowska-Karamyan, A. J.; Harmann, M. T. Chem. Rev. 2010, 110, 4489.
      (f) Shiri, M. Chem. Rev. 2012, 112, 3508.

    2. [2]

      (a) Gao, S. S.; Li, X. M.; Williams, K.; Proksch, P.; Ji, N. Y.; Wang, B. G. J. Nat. Prod. 2016, 79, 2066.
      (b) Cheng, G. G.; Li, D.; Hou, B.; Li, X.-N.; Liu, L.; Chen, Y. Y.; Lunga, P. K.; Khan, A.; Liu, Y. P.; Zuo, Z. L.; Luo, X. D. J. Nat. Prod. 2016, 79, 2158.
      (c) Sim, D. S. Y.; Teoh, W. Y.; Sim, K. S.; Lim, S. H.; Thomas, N. F.; Low, Y. Y.; Kam, T. S. J. Nat. Prod. 2016, 79, 1048.
      (d) Wang, Z. R.; Hu, J. H.; Yang, X. P.; Feng, X.; Li, X. S.; Huang, L.; Chan, A. S. C. J. Med. Chem. 2018, 61, 1871.

    3. [3]

      (a) Ragno, R.; Coluccia, A.; Regina, G. L.; Martino, G. D.; Piscitelli, F.; Lavecchia, A.; Novellino, E.; Bergamini, A.; Ciaprini, C.; Sinistro, A.; Maga, G.; Crespan, E.; Artico, M.; Silvestri, R. J. Med. Chem. 2006, 49, 3172.
      (b) Famiglini, V.; La Regina, G.; Coluccia, A.; Pelliccia, S.; Brancale, A.; Maga, G.; Crespan, E.; Badia, R.; Riveira-Muñoz, E.; Esté, J. A.; Ferretti, R.; Cirilli, R.; Zamperini, C.; Botta, M.; Schols, D.; Limongelli, V.; Agostino, B.; Novellino, E.; Silvestri R. J. Med. Chem. 2014, 57, 9945.
      (c) Famiglini, V.; La Regina, G.; Coluccia, A.; Masci, D.; Brancale, A.; Badia, R.; Riveira-Muñoz, E.; Esté, J. A. Crespan, E.; Brambilla, A.; Maga, G.; Catalano, M.; Limatola, C.; Formica, F. R.; Cirilli, R.; Novellino, E.; Silvestri, R. J. Med. Chem. 2017, 60, 6528.
      (d) Li, X; Gao, P.; Huang, B. S.; Zhou, Z. X.; Yu, Z.; Yuan, Z.; Liu, H. Q.; Pannecouque, C.; Daelemans, D.; De Clercq, E. Eur. J. Med. Chem. 2017, 126, 190.
      (e) Duchowicz1, P. R.; BaceloSilvina, D. E.; Fioressi, S. E.; Palermo, V.; Ibezim, N. E.; Romanelli, G. P. Med. Chem. Res. 2018, 27, 420.

    4. [4]

      (a) Regina, G. L.; Edler, M. C.; Brancale, A.; Kandil, S.; Coluccia, A.; Piscitelli, F.; Hamel, E.; Martino, G. D.; Matesanz, R.; Díaz, J. F.; Scovassi, A. I.; Prosperi, E.; Lavecchia, A.; Novellino, E.; Artico, M.; Silvestri, R. J. Med. Chem. 2007, 50, 2865.
      (b) La Regina, G.; Bai, R.; Coluccia, A.; Famiglini, V.; Pelliccia, S.; Passacantilli, S.; Mazzoccoli, C.; Ruggieri, V.; Verrico, A.; Miele, A.; Monti, L.; Nalli, M.; Alfonsi, R.; Di Marcotullio, L.; Gulino, A.; Ricci, B.; Soriani, A.; Santoni, A.; Caraglia, M.; Porto, S.; Da Pozzo, E.; Martini, C.; Brancale, A.; Marinelli, L.; Novellino, E.; Vultaggio, S.; Varasi, M.; Mercurio, C.; Bigogno, C.; Dondio, G.; Hamel, E.; Lavia, P.; Silvestri, R. J. Med. Chem. 2015, 58, 5789.
      (c) Sidhu, J. S.; Singla, R.; Mayank, Jaitak. V. Anti-Cancer Agents Med. Chem. 2016, 16, 160.

    5. [5]

      Ramakrishna, V. S. N.; Shirsath, V. S.; Kambhampati, R. S.; Vishwakarma, S.; Kandikere, N. V.; Kota, S.; Jasti. V. WO 2007020653, 2007.

    6. [6]

      Hu, X.; Compton, J. R.; AbdulHameed, M. D. M.; Marchand, C. L.; Robertson, K. L.; Leary, D. H.; Jadhav, A.; Hershfield, J. R.; Wallqvist, A.; Friedlander, A. M.; Legler, P. M. J. Med. Chem. 2013, 56, 5275.  doi: 10.1021/jm4001242

    7. [7]

      (a) Unangst, P. C.; Connor, D. T.; Stabler, S. R.; Weikert, R. J.; Carethers, M. E.; Kennedy, J. A.; Thueson, D. O.; Chestnut, J. C.; Adolphson, R. L.; Conroy, M. C. J. Med. Chem. 1989, 32, 1360.
      (b) Armer, R. E.; Wynne, G. M. WO 2008012511, 2008.

    8. [8]

      Nuth, M.; Guan, H.; Zhukovskaya, N.; Saw, Y. L.; Ricciardi, R. P. J. Med. Chem. 2013, 56, 3235.  doi: 10.1021/jm301735k

    9. [9]

      (a) Hamel, P. J. Org. Chem. 2002, 67, 2854.
      (b) Vedejs, E.; Little, J. D. J. Org. Chem. 2004, 69, 1794.
      (c) Li, J. X.; An, Y. N.; Li, J. W.; Yang, S. R.; Wu, W. Q.; Jiang, H. F. Org. Chem. Front. 2017, 4, 1590.

    10. [10]

      (a) Montevecchi, P. C.; Navacchia, M. L.; Spagnolo, P. Eur. J. Org. Chem. 1998, 6, 1219.
      (b) Chen, Y.; Cho, C. H.; Larock, R. C. Org. Lett. 2009, 11, 173.
      (c) Guo, Y. J.; Tang, R. Y.; Li, J. H.; Zhong, P.; Zhang, X. G. Adv. Synth. Catal. 2009, 351, 2615.
      (d) Kumar, P. P.; Reddy, Y. D.; Reddy, C. V. R.; Devi, B. R.; Dubey, P. K. J. Sulfur Chem. 2014, 35, 356.
      (e) Yang, Y.; Zhang, S.; Tang, L.; Hu, Y. B.; Zha, Z. G.; Wang, Z. Y. Green Chem. 2016, 18, 2609.
      (f) Li, J.; Cai, Z. J.; Wang, S. Y.; Ji, S. J. Org. Biomol. Chem. 2016, 14, 9384.
      (g) Guo, W.; Tan, W.; Zhao, M. M.; Tao, K. L.; Zheng, L. Y.; Wu, Y. Q.; Chen, D. L.; Fan, X. L. RSC Adv. 2017, 7, 37739.
      (h) Liao, H. X.; Yang, Y.; Li, W. M.; Shen, C.; Zhang, P. F. Curr. Org. Chem. 2017, 21, 2509.
      (i) Šiaučiulis, M.; Sapmaz, S.; PulisA, P.; Procter, D. J. Chem. Sci. 2018, 9, 754.
      (j) Li, J. X.; Li, C. S.; Yang, S. R.; An, Y. N.; Wu, W. Q.; Jiang, H. F. J. Org. Chem. 2016, 81, 2875.
      (k) Lavekar, A. G.; Equbal, D.; Saima; Sinha, A. K. Adv. Synth. Catal. 2018, 360, 180.

    11. [11]

      Li, Z.; Hong, L. C.; Liu, R. T.; Shen, J. Z.; Zhou, X. G. Tetrahedron Lett. 2011, 52, 1343.  doi: 10.1016/j.tetlet.2011.01.052

    12. [12]

      (a) Kumar, D. R.; Satyanarayana, G. Org. Lett. 2015, 17, 5894.
      (b) Liu, H.; Xi, F. G.; Sun, W.; Yang, N. N.; Gao, E. Q. Inorg. Chem. 2016, 55, 5753.
      (c) Corma, A.; Navas, J.; Sabater, M. J. Chem. Rev. 2018, 118, 1410.
      (d) Korvorapun, K.; Kaplaneris, N.; Rogge, T.; Warratz, S.; Stückl, A. C.; Ackermann, L. ACS Catal. 2018, 8, 886.

    13. [13]

      (a) Fang, Y. Q.; Lautens, M. Org. Lett. 2005, 7, 3549.
      (b) Fang, Y. Q.; Lautens, M. J. Org. Chem. 2008, 73, 538.
      (c) Chai, D. I.; Lautens, M. J. Org. Chem. 2009, 74, 3054.
      (d) Arthuis, M.; Pontikis, R.; Florent, J. C. Org. Lett. 2009, 11, 4608.

    14. [14]

      Li, Z.; Hong, J. Q.; Zhou, X. G. Tetrahedron 2011, 67, 3690.  doi: 10.1016/j.tet.2011.03.067

    15. [15]

      CCDC 861518 for 4f contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/datarequest/cif.

    16. [16]

      (a) Blanco, G. A.; Baumgartner, M. T. Tetrahedron Lett. 2011, 52, 7061.
      (b) Yan, G. b.; Borah, A. J.; Wang, L. G. Org. Biomol. Chem. 2014, 12, 9557.
      (c) Zhao, X.; Li, T. J.; Zhang, L. P.; Lu, K. Org. Biomol. Chem. 2016, 14, 1131.

    17. [17]

      (a) Taniguchi, N. J. Org. Chem. 2006, 71, 7874.
      (b) Stein, A.; Alves, D.; da Rocha, J.; Nogueira, C.; Zeni, G. Org. Lett. 2008, 10, 4983.
      (c) Taniguchi, N. Tetrahedron 2009, 65, 2782.
      (d) Wu, W.; Ding, Y. C.; Xie, P.; Tang, Q. J.; Pittman Jr. C. U.; Zhou, A. H. Tetrahedron 2017, 73, 2151.

    18. [18]

      (a) Ali, M. H.; McDermott, M. Tetrahedron Lett. 2002, 43, 6271.
      (b) Kabalka, G. W.; Reddy, M. S.; Yao, M. L. Tetrahedron Lett. 2009, 50, 7340.
      (c) Singh, D.; Deobald, A. M.; Camargo, L. S.; Tabarelli, G.; Rodrigues, O. D.; Braga, A. L. Org. Lett. 2010, 12, 3288.

  • 加载中
    1. [1]

      Liping GUO . Synthesis and crystal structure characterization of yttrium imido complex: The reactivity of 2-substituted-1-amino-o-carborane with yttrium dialkyl complex. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1409-1415. doi: 10.11862/CJIC.20250065

    2. [2]

      Wenjuan SHIYuke LUXiuyuan LILei HOUYaoyu WANG . Mg(Ⅱ) metal-organic frameworks based on biphenyltetracarboxylic acid: Synthesis and CO2 adsorption and catalytic conversion performance. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2455-2463. doi: 10.11862/CJIC.20250220

    3. [3]

      Lifang HEWenjie TANGYaoze LUOMingsheng LIANGJianxin TANGYuxuan WUFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012

    4. [4]

      Xuan PanTao ShengZhanzhu Liu . A concise total synthesis of monoterpenoid indole alkaloid (-)-voacafricine A. Chinese Chemical Letters, 2025, 36(10): 110913-. doi: 10.1016/j.cclet.2025.110913

    5. [5]

      Wei ZhouXi ChenLin LuXian-Rong SongMu-Jia LuoQiang Xiao . Recent advances in electrocatalytic generation of indole-derived radical cations and their applications in organic synthesis. Chinese Chemical Letters, 2024, 35(4): 108902-. doi: 10.1016/j.cclet.2023.108902

    6. [6]

      Ya Ren Cong Zhang Haiyan Wang Jin-Xia Liang Chun Zhu Han-Shi Hu Jun Li . Defective Ru1@Mo2COx Single-Atom Catalyst for Efficient Thermal Catalysis for Ammonia Synthesis. Chinese Journal of Structural Chemistry, 2025, 44(8): 100649-100649. doi: 10.1016/j.cjsc.2025.100649

    7. [7]

      Xiaoyu ZhaoKai GaoSen XueWei RanRui Liu . Synergistic effects of oxygen vacancies and Pd single atoms on Pd@TiO2−x for efficient HER catalysis. Chinese Chemical Letters, 2025, 36(6): 110309-. doi: 10.1016/j.cclet.2024.110309

    8. [8]

      Yongxin LIUXingchen LIHongjia LIUDanni LITao ZHANGXi CHEN . Enhancement effect of Fe3O4 conversion to MIL-100(Fe) on activation of persulfate for degradation of antibiotic. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2503-2513. doi: 10.11862/CJIC.20250169

    9. [9]

      Qingtao CHENXiangdong SHIXianghai RAOLiying JIANGChunxiao JIAFenghua CHEN . Catalytic and in situ surface-enhanced Raman scattering detection properties of graphene oxide/gold nanorod assembly. Chinese Journal of Inorganic Chemistry, 2026, 42(1): 120-128. doi: 10.11862/CJIC.20250091

    10. [10]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    11. [11]

      Liliang ChuXiaoyan ZhangJianing LiXuelei DengMiao WuYa ChengWeiping ZhuXuhong QianYunpeng Bai . Continuous-flow synthesis of polysubstituted γ-butyrolactones via enzymatic cascade catalysis. Chinese Chemical Letters, 2024, 35(4): 108896-. doi: 10.1016/j.cclet.2023.108896

    12. [12]

      Ping SunYuanqin HuangShunhong ChenXining MaZhaokai YangJian Wu . Indole derivatives as agrochemicals: An overview. Chinese Chemical Letters, 2024, 35(7): 109005-. doi: 10.1016/j.cclet.2023.109005

    13. [13]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    14. [14]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    15. [15]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    16. [16]

      Lixing ZHANGYaowen WANGXu HANJunhong ZHOUJinghui WANGLiping LIGuangshe LI . Research progress in the synthesis of fluorine-containing perovskites and their derivatives. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1689-1701. doi: 10.11862/CJIC.20250007

    17. [17]

      Ziyan Wang Yihe Gao Chao Han . A breakthrough approach to hydrogen peroxide synthesis: Defect-enhanced catalysis in SnSe nanosheets. Chinese Journal of Structural Chemistry, 2025, 44(10): 100679-100679. doi: 10.1016/j.cjsc.2025.100679

    18. [18]

      Cui XinZi-Jian ZhaoWei-Min He . Indole-quinoline transmutation enabled by a formal rhodium carbynoid. Chinese Chemical Letters, 2025, 36(11): 111583-. doi: 10.1016/j.cclet.2025.111583

    19. [19]

      Yuhao Guo Na Li Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320

    20. [20]

      Zhao GuYunhui YangSong YeCongyang Wang . 2,3-Arylacylation of allenes through synergetic catalysis of palladium and N-heterocyclic carbene. Chinese Chemical Letters, 2025, 36(5): 110334-. doi: 10.1016/j.cclet.2024.110334

Metrics
  • PDF Downloads(7)
  • Abstract views(1546)
  • HTML views(171)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return