Citation: Zhu Xiang, Wu Qinglai, Li Junkai. Research Progress of Phenazine-1-carboxylic Acid and Its Analogue[J]. Chinese Journal of Organic Chemistry, ;2019, 39(10): 2744-2758. doi: 10.6023/cjoc201904023 shu

Research Progress of Phenazine-1-carboxylic Acid and Its Analogue

  • Corresponding author: Wu Qinglai, wql106@163.com Li Junkai, junkaili@sina.com.com
  • Received Date: 9 April 2019
    Revised Date: 16 May 2019
    Available Online: 3 October 2019

    Fund Project: the National Natural Science Foundation of China 31672069the National Key R&D Program of China 2018YFD0200500Project supported by the National Key R&D Program of China (No. 2018YFD0200500), the National Natural Science Foundation of China (No. 31672069) and the Funds for Excellent Doctoral Dissertation Cultivation Program in Yangtze University

Figures(28)

  • Phenazine-1-carboxylic acid (PCA) as a natural product widely exists in microbial metabolites of Pseudomonads and Streptomycetes, which displays potent inhibitory activities against plant pathogens, and has medical antibacterial and antitumor effects, and so on. In this review, the biosynthesis and chemosynthesis of phenazine-1-carboxylic acid are summarized. At the same time, the diverse biological evaluations of its biosynthetic and chemosynthetic analogues are summarized, which could provide reference for the study of structural modifications and biological activities of these analogues.
  • 加载中
    1. [1]

      Abdelfattah, M. S.; Toume, K.; Ishibashi, M. J. Antibiot. 2011, 64, 271.  doi: 10.1038/ja.2010.172

    2. [2]

      Jasim, B.; Anisha, C.; Rohini, S.; Kurian, J. M.; Jyothis, M.; Radhakrishnan, E. K. World J. Microb. Biot. 2014, 30, 1649.  doi: 10.1007/s11274-013-1582-z

    3. [3]

      Kögl, F.; Postowsky, J. J. Justus Liebig's Ann. Chem. 1930, 480, 280.  doi: 10.1002/jlac.19304800117

    4. [4]

      Ou, J. G.; Lu, Y. H. Chem. Reag. 1982, 4, 41(in Chinese).

    5. [5]

      Isono, K.; Suzuki, S.; Sawazaki, T.; Nakamura, G.; Kawasaki, M.; Yamashita, T.; Anzai, K.; Serizawa, Y.; Sekiyama, Y. J. Antibiot. 1955, 8, 19.

    6. [6]

      Nelson, C. D.; Toohey, J. I. US 3367765, 1968.

    7. [7]

      Abdelfattah, M. S.; Ishikawa, N.; Karmakar, U. K.; Yamaku, K.; Ishibashi, M. J. Antibiot. 2016, 69, 446.  doi: 10.1038/ja.2015.129

    8. [8]

      Thanabalasingam, D.; Kumar, N. S.; Jayasinghe, L.; Fujimoto, Y. Nat. Prod. Commun. 2015, 10, 1659.

    9. [9]

      Wu, Q. L.; Xu, Z. H.; Li, J. K. Chin. J. Pestic. Sci. 2016, 18, 669(in Chinese).

    10. [10]

      Hu, H. B.; Xu, Y. Q.; Feng, C.; Xue, H. Z.; Hur, B. K. J Microbiol. Biotechnol. 2005, 15, 86.

    11. [11]

      Wang, C. H.; Zhu, X. D.; Xu, Y. Q.; Feng, Z. T. J. Shanghai Jiaotong Univ. 2000, 34, 1574(in Chinese).  doi: 10.3321/j.issn:1006-2467.2000.11.030

    12. [12]

      Xu, Y. Q.; Tang, W. N.; Zheng, Y. L.; Zhong, Z. X.; Xu, T. W. J. Shanghai Jiaotong Univ. 1999, 33, 210(in Chinese).  doi: 10.3321/j.issn:1006-2467.1999.02.024

    13. [13]

      Zheng, W. J.; Xu, S.; Zhou, M. G. Chin. J. Pestic. Sci. 2011, 13, 28(in Chinese).  doi: 10.3969/j.issn.1008-7303.2011.01.05

    14. [14]

      Jin, Y.; Hu, H. B.; Zhang, X. H.; Xu, Y. Q. Acta Agric. Shanghai 2005, 21, 106(in Chinese).

    15. [15]

      Xu, Y. Q. Fine Spec. Chem. 2004, 12, 8(in Chinese).

    16. [16]

      Guttenberger, N.; Blankenfeldt, W.; Breinbauer, R. Bioorg. Med. Chem. 2017, 25, 6149.  doi: 10.1016/j.bmc.2017.01.002

    17. [17]

      Mavrodi, D. V.; Blankenfeldt, W.; Thomashow, L. S. Annu. Rev. Phytopathol. 2006, 44, 417.  doi: 10.1146/annurev.phyto.44.013106.145710

    18. [18]

      Price-Whelan, A.; Dietrich, L. E.; Newman, D. K. Nat. Chem. Biol. 2006, 2, 71.  doi: 10.1038/nchembio764

    19. [19]

      Zhang, F. H.; Xu, Y. Q.; Zhang, X. H. Agrochem. Res. Appl. 2006, 10, 4(in Chinese).

    20. [20]

      Chin-A-Woeng, T. F.; Bloemberg, G. V.; Lugtenberg, B. J. New Phytol. 2003, 157, 503.  doi: 10.1046/j.1469-8137.2003.00686.x

    21. [21]

      Laursen, J. B.; Nielsen, J. Chem. Rev. 2004, 104, 1663.  doi: 10.1021/cr020473j

    22. [22]

      Ingledew, W. M.; Campbell, J. J. R. Can. J. Microbiol. 1969, 15, 535.  doi: 10.1139/m69-092

    23. [23]

      Calhoun, D. H.; Carson, M.; Jensen, R. A. Microbiology 1972, 72, 581.

    24. [24]

      Turner, J. M.; Messenger, A. J. Adv. Microb. Physiol. 1986, 27, 211.  doi: 10.1016/S0065-2911(08)60306-9

    25. [25]

      Pierson, L. S.; Pierson, E. A. Appl. Microbiol. Biotechnol. 2010, 86, 1659.  doi: 10.1007/s00253-010-2509-3

    26. [26]

      Blankenfeldt, W.; Parsons, J. F. Curr. Opin. Struct. Biol. 2014, 29, 26.  doi: 10.1016/j.sbi.2014.08.013

    27. [27]

      Ahuja, E. G.; Janning, P.; Mentel, M.; Graebsch, A.; Breinbauer, R.; Hiller, W.; Costisella, B.; Thomashow, L. S.; Mavrodi, D. V.; Blankenfeldt, W. J. Am. Chem. Soc. 2008, 130, 17053.  doi: 10.1021/ja806325k

    28. [28]

      Chen, M.; Cao, H.; Peng, H.; Hu, H.; Wang, W.; Zhang, X. PloS One 2014, 9, e98537.  doi: 10.1371/journal.pone.0098537

    29. [29]

      Mavrodi, D. V.; Bonsall, R. F.; Delaney, S. M.; Soule, M. J.; Phillips, G.; Thomashow, L. S. J. Bacteriol. 2001, 183, 6454.  doi: 10.1128/JB.183.21.6454-6465.2001

    30. [30]

      Girard, G.; van Rij, E. T.; Lugtenberg, B. J.; Bloemberg, G. V. Microbiology 2006, 152, 43.  doi: 10.1099/mic.0.28284-0

    31. [31]

      Clemo, G. R.; Mcilwain, H. J. Chem. Soc. 1934, 1991.  doi: 10.1039/jr9340001991

    32. [32]

      Spicer, J. A.; Gamage, S. A.; Rewcastle, G. W.; Finlay, G. J.; Bridewell, D. J.; Baguley, B. C.; Denny, W. A. J. Med. Chem. 2000, 43, 1350.  doi: 10.1021/jm990423f

    33. [33]

      Zhu, H. J.; Zhu, X. L.; He, G. K.; Song, G. L.; Huang, R. J.; Shi, L. CN 103304496, 2013.

    34. [34]

      Zhu, H. J.; Zhan, Q. Y.; Zhu, X. L.; He, G. K.; Song, G. L.; Liu, R.; Liu, Q. CN 104045601, 2014 (in Chinese).

    35. [35]

      Vivian, D. L.; Hartwell, J. L.; Watermans, H. C. J. Org. Chem. 1954, 19, 1641.  doi: 10.1021/jo01375a013

    36. [36]

      Rewcastle, G. W.; Denny, W. A.; Baguley, B. C. J. Med. Chem. 1987, 30, 843.  doi: 10.1021/jm00388a017

    37. [37]

      Wolfe, J. P.; Buchwald, S. L. J. Org. Chem. 1997, 62, 1264.  doi: 10.1021/jo961915s

    38. [38]

      Raju, B. C.; Prasad, K. V.; Saidachary, G.; Sridhar, B. Org. Lett. 2014, 16, 420.  doi: 10.1021/ol4033122

    39. [39]

      Laha, J. K.; Tummalapalli, K. S.; Gupta, A. Org. Lett. 2014, 16, 4392.  doi: 10.1021/ol501766m

    40. [40]

      Leisinger, T.; Margraff, R. Microbiol. Rev. 1979, 43, 422.

    41. [41]

      Budzikiewicz, H. FEMS Microbiol. Lett. 1993, 104, 209.  doi: 10.1111/j.1574-6968.1993.tb05868.x

    42. [42]

      Brisbane, P. G.; Janik, L. J.; Tate, M. E.; Warren, R. F. Antimicrob. Agents Chemother. 1987, 31, 1967.  doi: 10.1128/AAC.31.12.1967

    43. [43]

      Jayatilake, G. S.; Thornton, M. P.; Leonard, A. C.; Grimwade, J. E.; Baker, B. J. J. Nat. Prod. 1996, 59, 293.  doi: 10.1021/np960095b

    44. [44]

      Zhou, L.; Jiang, H. X.; Jin, K. M.; Sun, S.; Zhang, W.; Zhang, X. H.; He, Y. W. Acta Microbiol. Sin. 2015, 55, 401(in Chinese).

    45. [45]

      Gong, X. J.; Feng, Z. T.; Zhang, H. Y.; Shen, L. J.; Wang, X. X.; Zhang, J. W. CN 103343150, 2013.

    46. [46]

      Sakamoto, S.; Watanabe, T.; Kohda, Y.; Iijima, M.; Sawa, R.; Okada, M.; Kawada, M. J. Antibiot. 2017, 70, 1146.  doi: 10.1038/ja.2017.129

    47. [47]

      Dasgupta, D.; Kumar, A.; Mukhopadhyay, B.; Sengupta, T. K. Appl. Microbiol. Biotechnol. 2015, 99, 8653.  doi: 10.1007/s00253-015-6707-x

    48. [48]

      Parsons, J. F.; Calabrese, K.; Eisenstein, E.; Ladner, J. E. Acta Crystallogr., Sect. D:Biol. Crystallogr. 2004, 60, 2110.  doi: 10.1107/S0907444904022474

    49. [49]

      Messenger, A. J.; Turner, J. M. FEMS Microbiol. Lett. 1983, 18, 65.  doi: 10.1111/j.1574-6968.1983.tb00450.x

    50. [50]

      Umezawa, H.; Hayano, S.; Maeda, K.; Ogata, Y.; Okami, Y. Jpn. Med. J. 1950, 3, 111.  doi: 10.7883/yoken1948.3.111

    51. [51]

      Kidani, Y. Chem. Pharm. Bull. 1959, 7, 74.  doi: 10.1248/cpb.7.74

    52. [52]

      Chatterjee, S.; Vijayakumar, E. K. S.; Franco, C. M. M.; Maurya, R.; Blumbach, J.; Ganguli, B. N. J. Antibiot. 1995, 48, 1353.  doi: 10.7164/antibiotics.48.1353

    53. [53]

      Krastel, P.; Zeeck, A.; Gebhardt, K.; Fiedler, H. P.; Rheinheimer, J. ChemInform 2003, 34, 794.

    54. [54]

      Pusecker, K.; Laatsch, H.; Helmke, E.; Weyland, H. J. Antibiot. 1997, 50, 479.  doi: 10.7164/antibiotics.50.479

    55. [55]

      Gilpin, M. L.; Fulston, M.; Payne, D.; Cramp, R.; Hood, I. J. Antibiot. 1995, 48, 1081.  doi: 10.7164/antibiotics.48.1081

    56. [56]

      Gao, X.; Lu, Y.; Xing, Y.; Ma, Y.; Lu, J.; Bao, W.; Wang, Y.; Xi, T. Microbiol. Res. 2012, 167, 616.  doi: 10.1016/j.micres.2012.02.008

    57. [57]

      Choi, E. J.; Kwon, H. C.; Ham, J.; Yang, H. O. J. Antibiot. 2009, 62, 621.  doi: 10.1038/ja.2009.92

    58. [58]

      Smitka, T. A.; Bunge, R. H.; Wilton, J. H.; Hokanson, G. C.; French, J. C.; Cun-Heng, H. E.; Clardy, J. J. Antibiot. 1986, 39, 800.  doi: 10.7164/antibiotics.39.800

    59. [59]

      Hosoya, Y.; Adachi, H.; Nakamura, H.; Nishimura, Y.; Naganawa, H.; Okami, Y.; Takeuchi, T. Tetrahedron Lett. 1996, 37, 9227.  doi: 10.1016/S0040-4039(96)02190-9

    60. [60]

      Sakthivel, N.; Kumar, R. US 7365194, 2005.

    61. [61]

      Tamaoki, T.; Kasai, M.; Shirahata, K.; Tomita, F. J. Antibiot. 1982, 35, 979.  doi: 10.7164/antibiotics.35.979

    62. [62]

      Abdel-Mageed, W. M.; Milne, B. F.; Wagner, M.; Schumacher, M.; Sandor, P.; Pathom-aree, W.; Goodfellow, M.; Bull, A. T.; Horikoshi, K.; Ebel. R.; Diederich, M.; Fiedler, H.; Jaspars, M. Org. Biomol. Chem. 2010, 8, 2352.  doi: 10.1039/c001445a

    63. [63]

      Wagner, M.; Abdel-Mageed, W. M.; Ebel, R.; Bull, A. T.; Goodfellow, M.; Fiedler, H. P.; Jaspars, M. J. Nat. Prod. 2014, 77, 416.  doi: 10.1021/np400952d

    64. [64]

      Abdelfattah, M. S.; Kazufumi, T.; Ishibashi, M. J. Nat. Prod. 2010, 73, 1999.  doi: 10.1021/np100400t

    65. [65]

      Abdelfattah, M. S.; Toume, K.; Ishibashi, M. Chem. Pharm. Bull. 2011, 59, 508.  doi: 10.1248/cpb.59.508

    66. [66]

      Liang, Y.; Chen, L.; Ye, X.; Anjum, K.; Lian, X. Y.; Zhang, Z. Nat. Prod. Res. 2017, 31, 411.  doi: 10.1080/14786419.2016.1169419

    67. [67]

      Gamage, S. A.; Rewcastle, G. W.; Baguley, B. C.; Charlton, P. A.; Denny, W. A. Bioorg. Med. Chem. 2006, 14, 1160.  doi: 10.1016/j.bmc.2005.09.032

    68. [68]

      Wang, S.; Miller, W.; Milton, J.; Vicker, N.; Stewart, A.; Charlton, P.; Mistry, P.; Hardick, D.; Denny, W. A. Bioorg. Med. Chem. Lett. 2002, 12, 415.  doi: 10.1016/S0960-894X(01)00770-3

    69. [69]

      De Logu, A.; Palchykovska, L. H.; Kostina, V. H.; Sanna, A.; Meleddu, R.; Chisu, L.; Alexeeva, I. V.; Shved, A. D. Int. J. Antimicrob. Agents 2009, 33, 223.  doi: 10.1016/j.ijantimicag.2008.09.016

    70. [70]

      Hovorun, D. M.; Deriabin, O. M.; Rybalko, S. L.; Samijlenko, S. P.; Starosyla, D. B.; Platonov, M. O.; Palchykovska, L. G. Biopolym. Cell 2012, 28, 477.  doi: 10.7124/bc.00013A

    71. [71]

      Gupta, A.; Jaiswal, A.; Prachnad, S. Int. J. Pharm. Life Sci. 2014, 5, 3230.

    72. [72]

      Udumula, V.; Endres, J. L.; Harper, C. N.; Jaramillo, L.; Zhong, H. A.; Bayles, K. W.; Conda-Sheridan, M. Eur. J. Med. Chem. 2017, 125, 710.  doi: 10.1016/j.ejmech.2016.09.079

    73. [73]

      Krishnaiah, M.; de Almeida, N. R.; Udumula, V.; Song, Z.; Chhonker, Y. S.; Abdelmoaty, M. M.; do Nascimento, V. A.; Murry, D. J.; Conda-Sheridan, M. Eur. J. Med. Chem. 2018, 143, 936.  doi: 10.1016/j.ejmech.2017.11.026

    74. [74]

      Wang, M. Z.; Xu, H.; Yu, S. J.; Feng, Q.; Wang, S. H.; Li, Z. M. J. Agric. Food Chem. 2010, 58, 3651.  doi: 10.1021/jf904408c

    75. [75]

      Ye, L.; Zhang, H.; Xu, H.; Zou, Q.; Cheng, C.; Dong, D.; Xu, Y.; Li, R. Bioorg. Med. Chem. Lett. 2010, 20, 7369.  doi: 10.1016/j.bmcl.2010.10.050

    76. [76]

      Puopolo, G.; Masi, M.; Raio, A.; Andolfi, A.; Zoina, A.; Cimmino, A.; Evidente, A. Nat. Prod. Res. 2013, 27, 956.  doi: 10.1080/14786419.2012.696257

    77. [77]

      Li, B.; Lv, L.; Sun, Q.; Zhu, D. Q.; Li, Z. N.; Wang, G. CN 105418518, 2016.

    78. [78]

      Zhang, S.; Chen, H. X.; Du, X. B.; Zhang, Q.; Xu, Y. Q. Acta Agric. Shanghai 2015, 31, 1(in Chinese).

    79. [79]

      Niu, J.; Chen, J.; Xu, Z.; Zhu, X.; Wu, Q.; Li, J. Bioorg. Med. Chem. Lett. 2016, 26, 5384.  doi: 10.1016/j.bmcl.2016.10.044

    80. [80]

      Xiong, Z.; Niu, J.; Liu, H.; Xu, Z.; Li, J.; Wu, Q. Bioorg. Med. Chem. Lett. 2017, 27, 2010.  doi: 10.1016/j.bmcl.2017.03.011

    81. [81]

      Liu, H.; Yu, L. H.; Xiong, Z. P.; Zhang, M.; Li, J. K.; Xu, Z. H.; Wu, Q. L. Chin. J. Pest. Sci. 2017, 19, 290(in Chinese).

    82. [82]

      Qin, C.; Yu, D. Y.; Zhou, X. D.; Zhang, M.; Wu, Q. L.; Li, J. K. J. Asian Nat. Prod. Res. 2018.

    83. [83]

      Zhu, X.; Zhang, M.; Yu, L.; Xu, Z.; Yang, D.; Du, X.; Wu, Q.; Li, J. Nat. Prod. Res. 2018, 1.

    84. [84]

      Lu, X.; Zhu, X.; Zhang, M.; Wu, Q.; Zhou, X.; Li, J. Nat. Prod. Res. 2018, 1.

    85. [85]

      Zhu, X.; Yu, L.; Zhang, M.; Xu, Z.; Yao, Z.; Wu, Q.; Du, X.; Li, J. Chem. Cent. J. 2018, 12, 111.  doi: 10.1186/s13065-018-0478-2

    86. [86]

      Han, F.; Yan, R.; Zhang, M.; Xiang, Z.; Wu, Q.; Li, J. Nat. Prod. Res. 2019, 1.

    87. [87]

      Niu, J.; Nie, D.; Yu, D.; Wu, Q.; Yu, L.; Yao, Z.; Du, X.; Li, J. Pestic. Biochem. Physiol. 2017, 143, 8.  doi: 10.1016/j.pestbp.2017.10.004

    88. [88]

      Yu, L.; Huang, D.; Zhu, X.; Zhang, M.; Yao, Z.; Wu, Q.; Xu, Z.; Li, J. Molecules 2018, 23, 2139.  doi: 10.3390/molecules23092139

  • 加载中
    1. [1]

      Qiwen Chen Baolei Wang . Research Progress on One-Electron σ-Bond of Organic Compounds. University Chemistry, 2025, 40(11): 191-198. doi: 10.12461/PKU.DXHX202412136

    2. [2]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    3. [3]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    4. [4]

      Yuyang Xu Ruying Yang Yanzhe Zhang Yandong Liu Keyi Li Zehui Wei . Research Progress of Aflatoxins Removal by Modern Optical Methods. University Chemistry, 2024, 39(11): 174-181. doi: 10.12461/PKU.DXHX202402064

    5. [5]

      Shuyong Zhang Yanguang Wang Yi Yang Hualong Xu Yuqiang Ding Wenqing Zhang Gang Ni Qiue Cao Jianping Li Chunyan Sun Xijiang Han . The Leading Role of University Chemistry in the Reform and Development of the Applied Chemistry Major. University Chemistry, 2025, 40(12): 41-48. doi: 10.12461/PKU.DXHX202508013

    6. [6]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    7. [7]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    8. [8]

      Qingjun PANZhongliang GONGYuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365

    9. [9]

      Rongzhan LOUQiaoling KANGZhenchao BAIDongyun LIYang XURui WANGQingyi LU . Research progress of sodium ion high entropy layered oxide cathode. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2411-2428. doi: 10.11862/CJIC.20250142

    10. [10]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    11. [11]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    12. [12]

      Shengwen XULonglong YANGHouji CAODeshuang TUXing WEIChangsheng LUHong YAN . Research progress on light-induced functionalization of polyhedral carborane clusters. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2187-2200. doi: 10.11862/CJIC.20250192

    13. [13]

      Xiangyu CHENZhenzhen MIAOLigang XUGuangbao WUZhuang LIUWenzhen LÜRunfeng CHEN . Research progress on low-dimensional organic-inorganic hybrid metal halide optoelectronic materials. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2201-2217. doi: 10.11862/CJIC.20250056

    14. [14]

      Qi Zhang Ziyu Liu Hongxia Tan Jun Tong Dazhen Xu . Research Progress on Direct Synthesis of β-Hydroxy Sulfones via Difunctionalization of Olefins. University Chemistry, 2025, 40(11): 199-209. doi: 10.12461/PKU.DXHX202412064

    15. [15]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    16. [16]

      Wenli FENGLu ZHAOYunfeng BAIFeng FENG . Research progress on ultralong room temperature phosphorescent carbon dots. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308

    17. [17]

      Xiaoyu YANGYejun ZHANGYu ZOUHongchao YANGJiang JIANGQiangbin WANG . Research progress of inorganic X-ray nanoscintillators. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1929-1952. doi: 10.11862/CJIC.20250122

    18. [18]

      Gengyuan Li Yexin Wang Song Gao Shangda Jiang . Advances in Light-Induced Spin Polarization of Magnetic Molecules. University Chemistry, 2025, 40(12): 87-94. doi: 10.12461/PKU.DXHX202509112

    19. [19]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    20. [20]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

Metrics
  • PDF Downloads(98)
  • Abstract views(7181)
  • HTML views(1780)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return