Citation: Chen Jinyang, Li Yuhan, Mei Lan, Wu Hongyu. Application of Photosensitizer 2, 4, 5, 6-Tetrakis(carbazol-9-yl)-1, 3-dicyanobenzene in Photo-induced Transition-Metal-Free Organic Synthesis[J]. Chinese Journal of Organic Chemistry, ;2019, 39(11): 3040-3050. doi: 10.6023/cjoc201904022 shu

Application of Photosensitizer 2, 4, 5, 6-Tetrakis(carbazol-9-yl)-1, 3-dicyanobenzene in Photo-induced Transition-Metal-Free Organic Synthesis

  • Corresponding author: Chen Jinyang, chenjinyang@hnu.edu.cn
  • Received Date: 9 April 2019
    Revised Date: 1 July 2019
    Available Online: 24 November 2019

    Fund Project: Project supported by the Basic and Frontier Research Project of Chongqing City (No. Cstc2018jcyjAX0051)the Basic and Frontier Research Project of Chongqing City Cstc2018jcyjAX0051

Figures(23)

  • Visible-light-promoted organic synthesis is an important research hotspot and frontier in organic chemistry in recent years. Particularly, as a novel organic photosensitizer, 2, 4, 5, 6-tetrakis(carbazol-9-yl)-1, 3-dicyanobenzene (4CzIPN) has showed excellent catalytic performance in visible-light-induced radical reactions. The recent progress on the transition-metal-free photosynthesis under visible-light catalyzed by 4CzIPN is reviewed, and the application of 4CzIPN for photocatalytic organic transformations from different precursors (including silicon reagent, carboxylic acid and its derivatives, sulfur-containing reagent and fluorine reagent) is included.
  • 加载中
    1. [1]

    2. [2]

      Fukuzumi, S.; Ohkubo, K. Org. Biomol. Chem. 2014, 12, 6059.  doi: 10.1039/C4OB00843J

    3. [3]

      Ravelli, D.; Fagnoni, M.; Albini, A. Chem. Soc. Rev. 2013, 42, 97.  doi: 10.1039/C2CS35250H

    4. [4]

      (a) Nicewicz, D. A.; Nguyen, T. M. ACS Catal. 2014, 4, 355.
      (b) Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075.

    5. [5]

      Margrey, K. A.; Nicewicz, D. A. Acc. Chem. Res. 2016, 49, 1997.  doi: 10.1021/acs.accounts.6b00304

    6. [6]

      Hari, D. P.; König, B. Chem. Commun. 2014, 50, 6688.  doi: 10.1039/C4CC00751D

    7. [7]

      Srivastava, V.; Singh, P. P. RSC Adv. 2017, 7, 31377.  doi: 10.1039/C7RA05444K

    8. [8]

      Peng, J.-B.; Qi, X.; Wu, X.-F. ChemSusChem 2016, 9, 2279.  doi: 10.1002/cssc.201600625

    9. [9]

      Xu, W.; Dai, X.; Xu, H.; Weng, J. Chin. J. Org. Chem. 2018, 38, 2807 (in Chinese).
       

    10. [10]

      (a) Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Nature 2012, 492, 234.
      (b) Yokoyama, M.; Inada, K.; Tsuchiya, Y.; Nakanotani, H.; Adachi, C. Chem. Commun. 2018, 54, 8261.

    11. [11]

      Lu, J.; Pattengale, B.; Liu, Q.; Yang, S.; Shi, W.; Li, S.; Huang, J.; Zhang, J. J. Am. Chem. Soc. 2018, 140, 13719.  doi: 10.1021/jacs.8b07271

    12. [12]

      Luo, J.; Zhang, J. ACS Catal. 2016, 6, 873.  doi: 10.1021/acscatal.5b02204

    13. [13]

      Shang, T.-Y.; Lu, L.-H.; Cao, Z.; Liu, Y.; He, W.-M.; Yu, B. Chem. Commun. 2019, 55, 5408.  doi: 10.1039/C9CC01047E

    14. [14]

      Speckmeier, E.; Fischer, T. G.; Zeitler, K. J. Am. Chem. Soc. 2018, 140, 15353.  doi: 10.1021/jacs.8b08933

    15. [15]

      Lang, S. B.; Wiles, R. J.; Kelly, C. B.; Molander, G. A. Angew. Chem., Int. Ed. 2017, 56, 15073.  doi: 10.1002/anie.201709487

    16. [16]

      Sun, K.; Li, S.-J.; Chen, X.; Liu, Y.; Huang, X.; Wei, D.; Qu, L.; Zhao, Y.; Yu, B. Chem. Commun. 2019, 55, 2861.  doi: 10.1039/C8CC10243K

    17. [17]

      Phelan, J. P.; Lang, S. B.; Compton, J. S.; Kelly, C. B.; Dykstra, R.; Gutierrez, O.; Molander, G. A. J. Am. Chem. Soc. 2018, 140, 8037.  doi: 10.1021/jacs.8b05243

    18. [18]

      Milligan, J. A.; Phelan, J. P.; Polites, V. C.; Kelly, C. B.; Molander, G. A. Org. Lett. 2018, 20, 6840.  doi: 10.1021/acs.orglett.8b02968

    19. [19]

      Qrareya, H.; Dondi, D.; Ravelli, D.; Fagnoni, M. ChemCatChem 2015, 7, 3350.  doi: 10.1002/cctc.201500562

    20. [20]

      Zhou, R.; Goh, Y. Y.; Liu, H. W.; Tao, H. R.; Li, L. H.; Wu, J. Angew. Chem., Int. Ed. 2017, 56, 16621.  doi: 10.1002/anie.201711250

    21. [21]

      (a) Shaw, M. H.; Shurtleff, V. W.; Terrett, J. A.; Cuthbertson, J. D.; MacMillan, D. W. C. Science 2016, 352, 1304.
      (b) Le, C.; Liang, Y.; Evans, R. W.; Li, X.; MacMillan, D. W. C. Nature 2017, 547, 79.

    22. [22]

      (a) Huang, K.; Sun, C.-L.; Shi, Z.-J. Chem. Soc. Rev. 2011, 40, 2435.
      (b) Yu, B.; Zou, B.; Hu, C.-W. J. CO2 Util. 2018, 26, 314.

    23. [23]

      Patel, N. R.; Kelly, C. B.; Siegenfeld, A. P.; Molander, G. A. ACS Catal. 2017, 7, 1766.  doi: 10.1021/acscatal.6b03665

    24. [24]

      Cartier, A.; Levernier, E.; Corcé, V.; Fukuyama, T.; Dhimane, A.-L.; Ollivier, C.; Ryu, I.; Fensterbank, L. Angew. Chem., Int. Ed. 2019, 58, 1789.  doi: 10.1002/anie.201811858

    25. [25]

      (a) Wei, Y.; Hu, P.; Zhang, M.; Su, W. Chem. Rev. 2017, 117, 8864.
      (b) Zheng, Q.-Z.; Jiao, N. Chem. Soc. Rev. 2016, 45, 4590.
      (c) Hu, H.; Chen, X.; Sun, K.; Wang, J.; Liu, Y.; Liu, H.; Yu, B.; Sun, Y.; Qu, L.; Zhao, Y. Org. Chem. Front. 2018, 5, 2925.
      (d) Zhao, W.-M.; Chen, X.-L.; Yuan, J.-W.; Qu, L.-B.; Duan, L.-K.; Zhao, Y.-F. Chem. Commun. 2014, 50, 2018.

    26. [26]

      Huang, H.; Li, X.; Yu, C.; Zhang, Y.; Mariano, P. S.; Wang, W. Angew. Chem., Int. Ed. 2017, 56, 1500.  doi: 10.1002/anie.201610108

    27. [27]

      Huang, H.; Yu, C.; Zhang, Y.; Zhang, Y.; Mariano, P. S.; Wang, W. J. Am. Chem. Soc. 2017, 139, 9799.  doi: 10.1021/jacs.7b05082

    28. [28]

      Guo, J.; Wu, Q.-L.; Xie, Y.; Weng, J.; Lu, G. J. Org. Chem. 2018, 83, 12559.  doi: 10.1021/acs.joc.8b01849

    29. [29]

      Sherwood, T. C.; Li, N.; Yazdani, A. N.; Dhar, T. G. M. J. Org. Chem. 2018, 83, 3000.  doi: 10.1021/acs.joc.8b00205

    30. [30]

      Pawar, G. G.; Robert, F.; Grau, E.; Cramail, H.; Landais, Y. Chem. Commun. 2018, 54, 9337.  doi: 10.1039/C8CC05462B

    31. [31]

      Jiang, H.; Studer, A. Chem.-Eur. J. 2019, 25, 516.

    32. [32]

      Sherwood, T. C.; Xiao, H.-Y.; Bhaskar, R. G.; Simmons, E. M.; Zaretsky, S.; Rauch, M. P.; Knowles, R. R.; Dhar, T. G. M. J. Org. Chem. 2019.

    33. [33]

      Shu, C.; Mega, R. S.; Andreassen, B. J.; Noble, A.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2018, 57, 15430.  doi: 10.1002/anie.201808598

    34. [34]

      Xu, W.; Ma, J.; Yuan, X.-A.; Dai, J.; Xie, J.; Zhu, C. Angew. Chem., Int. Ed. 2018, 57, 10357.  doi: 10.1002/anie.201805927

    35. [35]

      (a) Wang, J.; Sun, K.; Chen, X.; Chen, T.; Liu, Y.; Qu, L.; Zhao, Y.; Yu, B. Org. Lett. 2019, 21, 1863.
      (b) Liu, F.; Wang, J.-Y.; Zhou, P.; Li, G.; Hao, W.-J.; Tu, S.-J.; Jiang, B. Angew. Chem., Int. Ed. 2017, 56, 15570.
      (c) Huang, M.-H.; Hao, W.-J.; Jiang, B. Chem.-Asian J. 2018, 13, 2958.

    36. [36]

      Cai, S.; Tian, Y.; Zhang, J.; Liu, Z.; Lu, M.; Weng, W.; Huang, M. Adv. Synth. Catal. 2018, 360, 4084.  doi: 10.1002/adsc.201800726

    37. [37]

      (a) Liu, X.; Xiong, F.; Huang, X.; Xu, L.; Li, P.; Wu, X. Angew. Chem., Int. Ed. 2013, 52, 6962.
      (b) Huang, H.-L.; Yan, H.; Gao, G.-L.; Yang, C.; Xia, W. Asian J. Org. Chem. 2015, 4, 674.
      (c) Xu, P.; Hu, K.; Gu, Z.; Cheng, Y.; Zhu, C. Chem. Commun. 2015, 51, 7222.
      (d) Egami, H.; Shimizu, R.; Usui, Y.; Sodeoka, M. Chem. Commun. 2013, 49, 7346.

    38. [38]

      Lu, M.; Qin, H.; Lin, Z.; Huang, M.; Weng, W.; Cai, S. Org. Lett. 2018, 20, 7611.  doi: 10.1021/acs.orglett.8b03340

    39. [39]

      Lu, M.; Liu, Z.; Zhang, J.; Tian, Y.; Qin, H.; Huang, M.; Hu, S.; Cai, S. Org. Biomol. Chem. 2018, 16, 6564.  doi: 10.1039/C8OB01922C

    40. [40]

      (a) Abdukader, A.; Zhang, Y.; Zhang, Z.; Liu, C. Chin. J. Org. Chem. 2016, 36, 875.
      (b) Chen, J.-R.; Yu, X.-Y.; Xiao, W.-J. Synthesis 2015, 47, 604.
      (c) Song, R.-J.; Liu, Y.; Xie, Y.-X.; Li, J.-H. Synthesis 2015, 47, 1195.

    41. [41]

      Li, J.-X.; Li, L.; Zhou, M.-D.; Wang, H. Org. Chem. Front. 2018, 5, 1003.  doi: 10.1039/C7QO00939A

    42. [42]

      Zhang, Q.-B.; Yuan, P.-F.; Kai, L.-L.; Liu, K.; Ban, Y.-L.; Wang, X.-Y.; Wu, L.-Z.; Liu, Q. Org. Lett. 2019, 21, 885.  doi: 10.1021/acs.orglett.8b03738

    43. [43]

      Martinez-Haya, R.; Marzo, L.; König, B. Chem. Commun. 2018, 54, 11602.  doi: 10.1039/C8CC07044J

    44. [44]

      Düsel, S. J. S.; König, B. Eur. J. Org. Chem. 2019, DOI: 10.1002/ejoc.201900411.  doi: 10.1002/ejoc.201900411

    45. [45]

      Shu, C.; Noble, A.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2019, 58, 3870.  doi: 10.1002/anie.201813917

    46. [46]

      Morcillo, S. P.; Dauncey, E. M.; Kim, J. H.; Douglas, J. J.; Sheikh, N. S.; Leonori, D. Angew. Chem., Int. Ed. 2018, 57, 12945.  doi: 10.1002/anie.201807941

    47. [47]

      (a) Mita, T.; Chen, J.; Sugawara, M.; Sato, Y. Angew. Chem., Int. Ed. 2011, 50, 1393.
      (b) Sathe, A. A.; Hartline, D. R.; Radosevich, A. T. Chem. Commun. 2013, 49, 5040.
      (c) Mita, T.; Sugawara, M.; Saito, K.; Sato, Y. Org. Lett. 2014, 16, 3028.
      (d) Guo, C.-X.; Zhang, W.-Z.; Zhou, H.; Zhang, N.; Lu, X.-B. Chem.-Eur. J. 2016, 22, 17156.

    48. [48]

      Ju, T.; Fu, Q.; Ye, J.-H.; Zhang, Z.; Liao, L.-L.; Yan, S.-S.; Tian, X.-Y.; Luo, S.-P.; Li, J.; Yu, D.-G. Angew. Chem., Int. Ed. 2018, 57, 13897.  doi: 10.1002/anie.201806874

  • 加载中
    1. [1]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    2. [2]

      Tongyan Yu Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070

    3. [3]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    4. [4]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    5. [5]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    6. [6]

      Lewang Yuan Yaoyao Peng Zong-Jie Guan Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086

    7. [7]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    8. [8]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    9. [9]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    10. [10]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    11. [11]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    12. [12]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    13. [13]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    14. [14]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    15. [15]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    16. [16]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    17. [17]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    18. [18]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    19. [19]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    20. [20]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

Metrics
  • PDF Downloads(70)
  • Abstract views(3699)
  • HTML views(1114)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return