Citation: Cheng Xiaohong, Xu Ke, Qu Shaohua, Ruan Zhijun. Ratiometric Fluorescent Probe for Homocysteine and Cysteine Based on the Aldehyde Functionalized Coumarin and Successful Bioimaging Application[J]. Chinese Journal of Organic Chemistry, ;2019, 39(10): 2835-2842. doi: 10.6023/cjoc201904020 shu

Ratiometric Fluorescent Probe for Homocysteine and Cysteine Based on the Aldehyde Functionalized Coumarin and Successful Bioimaging Application

  • Corresponding author: Cheng Xiaohong, chengxiaohong0807@126.com
  • Received Date: 9 April 2019
    Revised Date: 14 May 2019
    Available Online: 6 October 2019

    Fund Project: the Natural Science Foundation of Hubei Province 2018CFB454the National Natural Science Foundation of China 21704032Project supported by the National Natural Science Foundation of China (No. 21704032), the Natural Science Foundation of Hubei Province (No. 2018CFB454) and the Hubei Superior and Distinctive Discipline Group of "Mechatronics and Automobiles" (No. XKQ2019038)the Hubei Superior and Distinctive Discipline Group of "Mechatronics and Automobiles" XKQ2019038

Figures(8)

  • Novel reactive probes (C1 and C2) towards homocysteine/cysteine (Hcy/Cys) were designed and synthesized, based on the unique nucleophilic nature of bio-thiols. In the presence of Hcy/Cys, probe C1 displayed remarkable fluorescence enhancement. Meanwhile, ratiometric fluorescent probe C2 was designed through subtle structure adjustment. Differently, compound C2 displayed dramatic blue-shift in both fluorescence (100 nm) and absorption (95 nm) spectra upon the addition of Hcy/Cys. By virtue of the specific nucleophilic reaction, probe C2 had outstanding selectivity towards Hcy over Cys, GSH and other amino acids. The detection limit of probe C2 was calculated to be as low as 2.8×10-7 mol/L. Moreover, C2 was successfully applied to microscopic imaging for the detection of Hcy in HeLa cells with ratiometric fluorescent methods.
  • 加载中
    1. [1]

      (a) An, L.; Tang, Y.; Wang, S.; Li, Y.; Zhu, D. Macromol. Rapid Commun. 2006, 27, 993.
      (b) Zhao, D.; Du, J.; Chen, Y.; Ji, X.; He, Z.; Chan, W. H. Macromolecules 2008, 41, 5373.

    2. [2]

      (a) Weerapana, E.; Wang, C.; Simon, G. M.; Richter, F.; Khare, S.; Dillon, M. B.; Bachovchin, D. A.; Mowen, K.; Baker, D.; Cravatt, B. F. Nature 2010, 468, 790.
      (b) Reiser, J.; Adair, B.; Reinheckel, T. J. Clin. Invest. 2010, 120, 3421.
      (c) Lin, J.; Lee, I. M.; Song, Y.; Cook, N. R.; Selhub, J.; Manson, J. E.; Buring, J. E.; Zhang, S. M. Cancer Res. 2010, 70, 2397.

    3. [3]

      (a) Wang, J.; Hu, L. J.; Shen, J.; Jiang, J. Q.; Yu, K. Y., Sun, R. G. Chin. J. Org. Chem. 2018, 38, 760(in Chinese).
      (王军, 虎良军, 申婧, 姜吉泉, 郁科勇, 孙荣国, 有机化学, 2018, 38, 760.)
      (b) Ding, S.; Liu, M.; Hong, Y. Sci. China Chem. 2018, 61, 12.
      (c) Zhou, Y.; Yoon, J. Chem. Soc. Rev. 2012, 41, 52.
      (d) Jung, H. S.; Chen, X.; Kim, J. S.; Yoon, J. Chem. Soc. Rev. 2013, 42, 6019.
      (e) Yin, C.; Huo, F.; Zhang, J.; Martinez-Manez, R.; Yang, Y.; Lv, H.; Li, S. Chem. Soc. Rev. 2013, 42, 6032.
      (f) Yang, Y.; Zhao, Q.; Feng, W.; Li, F. Chem. Rev. 2012, 113, 192.

    4. [4]

      (a) Zhang, M.; Xiao, H. F.; Han, Z. X.; Yang, L. Q.; Wu, X. Y. Chin. J. Org. Chem. 2018, 38, 926(in Chinese).
      (张敏, 肖慧丰, 韩志湘, 仰榴青, 吴向阳, 有机化学, 2018, 38, 926.)
      (b) Jiang, K.; Cao, L.; Hao, Z. F.; Chen, M. Y.; Cheng, J. L.; Li, X.; Xiao, Pi.; Chen, L.; Wang, Z. Y. Chin. J. Org. Chem. 2017, 37, 2221(in Chinese).
      (蒋凯, 曹梁, 郝志峰, 陈美燕, 程洁銮, 李晓, 肖萍, 陈亮, 汪朝阳, 有机化学, 2017, 37, 2221.)
      (c) Hou, S. H.; Qu, Z. G.; Zhong, K. L.; Bian, Y. J.; Tang, L. J. Chin. J. Org. Chem. 2016, 36, 768(in Chinese).
      (侯淑华, 曲忠国, 钟克利, 边延江, 汤立军, 有机化学, 2016, 36, 768.)
      (d) Srikun, D.; Miller, E. W.; Domaille, D. W.; Chang, C. J. J. Am. Chem. Soc. 2008, 130, 4596.
      (e) Komatsu, K.; Urano, Y.; Kojima, H.; Nagano, T. J. Am. Chem. Soc. 2007, 129, 13447.
      (f) Tremblay, M. S.; Halim, M.; Sames, D. J. Am. Chem. Soc. 2007, 129, 7570.

    5. [5]

      Kimura, E.; Koike, T. Chem. Soc. Rev. 1998, 27, 179.  doi: 10.1039/a827179z

    6. [6]

      (a) Jung, H. S.; Han, J. H.; Pradhan, T.; Kim, S.; Lee, S. W.; Sessler, J. L.; Kim, T. W.; Kang, C.; Kim, J. S. Biomaterials 2012, 33, 945.
      (b) Yuan, L.; Lin, W.; Yang, Y. Chem. Commun. 2011, 47, 6275.
      (c) Jung, H. S.; Ko, K. C.; Kim, G. H.; Lee, A. R.; Na, Y. C.; Kang, C.; Lee, J. Y.; Kim, J. S. Org. Lett. 2011, 13, 1498.
      (d) Kwon, H.; Lee, K.; Kim. H.-J. Chem. Commun. 2011, 47, 1773.
      (e) Chen, X.; Ko, S. K.; Kim, M. J. Chem. Commun. 2010, 46, 2751.

    7. [7]

      (a) Yang, T.; Guo, Z.; Shao, A.; Zhao, P.; Zhu, W. Chin. J. Appl. Chem. 2016, 33, 397(in Chinese).
      (杨婷婷, 郭志前, 邵安东, 赵平, 朱为宏, 应用化学, 2016, 33, 397.)
      (b) Lee, M. H.; Han, J. H.; Kwon, P. S.; Bhuniya, S.; Kim, J. Y.; Sessler, J. L.; Kang, C.; Kim, J. S. J. Am. Chem. Soc. 2012, 134, 1316.
      (c) Shao, J.; Sun, H.; Guo, H.; Ji, S.; Zhao, J.; Wu, W.; Yuan, X.; Zhang, C.; James, T. D. Chem. Sci. 2012, 3, 1049.
      (d) Lim C. S.; Masanta, G.; Kim, H. J.; Han, J. H.; Kim, H. M.; Cho, B. R. J. Am. Chem. Soc. 2011, 133, 11132.
      (e) Zhao, C.; Zhou, Y.; Lin, Q.; Zhu, L.; Feng, P.; Zhang, Y.; Cao, J. J. Phys. Chem. B 2010, 115, 642.

    8. [8]

      (a) Secor, K.; Plante, J.; Avetta, C.; Glass, T. J. Mater. Chem. 2005, 15, 4073.
      (b) Zhou, Y.; Won, J.; Lee, J. Y.; Yoon, J. Chem. Commun. 2011, 47, 1997.

    9. [9]

      (a) Xiong, L.; Zhao, Q.; Chen, H.; Wu, Y.; Dong, Z.; Zhou, Z.; Li, F. Inorg. Chem. 2010, 49, 6402.
      (b) Shiu, H. Y.; Chong, H. C.; Leung, Y. C.; Wong, M. K.; Che, C. M. Chem. Eur. J. 2010, 16, 3308.
      (c) Li, H.; Fan, J.; Wang, J.; Tian, M.; Du, J.; Sun, S.; Sun, P.; Peng, X. Chem. Commun. 2009, 45, 5904.
      (d) Lee, K. S.; Kim, T. K.; Lee, J. H.; Kim, H. J.; Hong, J. I. Chem. Commun. 2008, 44, 6173.

    10. [10]

      Tsai, M. S.; Hsu, Y. C.; Lin, J. T.; Chen, H. C.; Hsu, C. P. J. Phys. Chem. C 2007, 111, 18785.  doi: 10.1021/jp075653h

    11. [11]

      Lee, K. S.; Kim, H. J.; Kim, G. H.; Shin, I.; Hong, J. I. Org. Lett. 2008, 10, 49.  doi: 10.1021/ol7025763

    12. [12]

      Williams, A. T. R.; Winfield, S. A.; Miller, J. N. Analyst 1983, 108, 1067.  doi: 10.1039/an9830801067

    13. [13]

      Wang, W.; Escobedo, J. O.; Lawrence, C. M.; Strongin, R. M. J. Am. Chem. Soc. 2004, 126, 3400.  doi: 10.1021/ja0318838

    14. [14]

      Seshadri, S.; Beiser, A.; Selhub, J.; Jacques, P. F.; Rosenberg, I. H.; D'Agostino, R. B.; Wilson, P. W. F.; Wolf, P. A. N. Engl. J. Med. 2002, 346, 476.  doi: 10.1056/NEJMoa011613

    15. [15]

      Dong, Y. S.; Liu, T. Q.; Wan, X. J.; Pei, H.; Wu, L. S.; Yao, Y. W. Sens. Actuator, B 2017, 241, 1139.  doi: 10.1016/j.snb.2016.10.022

    16. [16]

      Yuan, L.; Lin, W. Y.; Yang, Y. T. Chem. Commun. 2011, 47, 6275.  doi: 10.1039/c1cc11316j

    17. [17]

      Zhang, X.; Hang, Y. D.; Qu, W. S.; Yan, Y. C.; Zhao, P.; Hua, J. L. RSC Adv. 2016, 6, 20014.  doi: 10.1039/C5RA25220B

    18. [18]

      Chen, F.; Chen, Z.; Sun, Y.; Liu, H.; Han, D.; He, H.; Zhang, X.; Wang, S. RSC Adv. 2017, 7, 16387.  doi: 10.1039/C6RA28712C

    19. [19]

      Sun, Y.; Chen, M.; Liu, J.; Lv, X.; Li, J.; Guo, W. Chem. Commun. 2011, 47, 11029.  doi: 10.1039/c1cc14299b

    20. [20]

      Li, H.; Jin, L.; Kan, Y.; Yin, B. Sens. Actuator, B 2014, 196, 546.  doi: 10.1016/j.snb.2014.02.052

    21. [21]

      Qu, W. S.; Yang, L.; Hang, Y. D.; Zhang, X.; Qu, Y.; Hua, J. L. Sens. Actuator, B 2015, 211, 275.  doi: 10.1016/j.snb.2015.01.117

    22. [22]

      Liu, X.; Niu, L.; Chen, Y.; Yang, Y.; Yang, Q. Biosens. Bioelectron. 2017, 90, 403.  doi: 10.1016/j.bios.2016.06.076

    23. [23]

      Chen, X.; Ko, S. K.; Kim, M. J.; Shin, I.; Yoon, J. Chem. Commun. 2010, 46, 2751.  doi: 10.1039/b925453f

    24. [24]

      Jung, H. S.; Ko, K. C.; Kim, G. H.; Lee, A. R.; Na, Y. C.; Kang, C.; Lee, J. Y.; Kim, J. S. Org. Lett. 2011, 13, 1498.  doi: 10.1021/ol2001864

    25. [25]

      Shao, J.; Guo, H.; Ji, S.; Zhao, J. Biosens. Bioelectron. 2011, 26, 3012.  doi: 10.1016/j.bios.2010.12.004

    26. [26]

      Long, L.; Lin, W. Y.; Chen, B.; Gao, W.; Yuan, L. Chem. Commun. 2011, 47, 893.  doi: 10.1039/C0CC03806G

    27. [27]

      (a) Zhang, S.; Wright, J. E. I.; Bansal, G.; Cho, P.; Uludag, H. Biomacromolecules 2005, 6, 2800.
      (b) Shiu, H. Y.; Wong, M. K.; Che, C. M. Chem. Commun. 2011, 47, 4367.

    28. [28]

      (a) Tatay, S.; Gavina, P.; Coronado, E.; Palomares, E. Org. Lett. 2006, 8, 3857.
      (b) Palomares, E.; Vilar, R.; Durrant, J. R. Chem. Commun. 2004, 40, 362.

    29. [29]

      (a) Delley, B. J. Chem. Phys. 1990, 92, 508.
      (b) Delley, B. J. Chem. Phys. 2000, 113, 7756.

    30. [30]

      Lin, Y.; Lin, W. Y.; Song, J. Z.; Yang, Y. T. Chem. Commun. 2011, 47, 12691.  doi: 10.1039/c1cc15762k

    31. [31]

      (a) Qian, Z.; Shan, X.; Chai, L.; Ma, J.; Chen, J.; Feng, H. ACS Appl. Mater. Interfaces 2014, 6, 6797.
      (b) Meng, Z.; Wu, S.; Zhong, L.; Zeng, M.; Sun, X.; Li, L.; Zhang, S. RSC Adv. 2018, 8, 38075.
      (c) Liao, S.; Zhao, X.; Zhu, F.; Chen, M.; Wu, Z.; Song, X.; Yang, H.; Chen, X. Talanta 2018, 180, 300.

  • 加载中
    1. [1]

      Linfang ZHANGWenzhu YINGui YIN . A 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran-based near-infrared fluorescence probe for the detection of hydrogen sulfide and imaging of living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 540-548. doi: 10.11862/CJIC.20240405

    2. [2]

      Lei ZHANGCheng HEYang JIAO . An azo-based fluorescent probe for the detection of hypoxic tumor cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1162-1172. doi: 10.11862/CJIC.20250081

    3. [3]

      Zhoupeng ZhengShengyi GongQianhua LiShiya ZhangGuoqiang Feng . Lipid droplets and gallbladder targeted fluorescence probe for ratiometric NO imaging in gallstones disease models. Chinese Chemical Letters, 2025, 36(5): 110191-. doi: 10.1016/j.cclet.2024.110191

    4. [4]

      Tiancong ShiXi ChenXiao ZhouHongyi ZhangFuping HanLihan CaiWen SunJianjun DuJiangli FanXiaojun Peng . Azaindole-based asymmetric pentamethine cyanine dye for mitochondrial pH detection and near-infrared ratiometric fluorescence imaging of mitophagy. Chinese Chemical Letters, 2025, 36(6): 110408-. doi: 10.1016/j.cclet.2024.110408

    5. [5]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    6. [6]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    7. [7]

      Meiling XuXinyang LiPengyuan LiuJunjun LiuXiao HanGuodong ChaiShuangling ZhongBai YangLiying Cui . A novel and visible ratiometric fluorescence determination of carbaryl based on red emissive carbon dots by a solvent-free method. Chinese Chemical Letters, 2025, 36(2): 109860-. doi: 10.1016/j.cclet.2024.109860

    8. [8]

      Ren ShenYanmei FangChunxiao YangQuande WeiPui-In MakRui P. MartinsYanwei Jia . UV-assisted ratiometric fluorescence sensor for one-pot visual detection of Salmonella. Chinese Chemical Letters, 2025, 36(4): 110143-. doi: 10.1016/j.cclet.2024.110143

    9. [9]

      Hui ZhangRong FengWanyi YuHongbei WeiTianhong WuPeng ZhangWenhai BianXin LiDi GaoGuojun WengZhe YangTony D. JamesXiaolong Sun . Evaluating the global thiols redox state in living cells using a reducing sulfur species responsive fluorescence switching platform. Chinese Chemical Letters, 2025, 36(4): 110528-. doi: 10.1016/j.cclet.2024.110528

    10. [10]

      Baoli YinXinlin LiuZhe LiZhifei YeYoujuan WangXia YinSulai LiuGuosheng SongShuangyan HuanXiao-Bing Zhang . Ratiometric NIR-Ⅱ fluorescent organic nanoprobe for imaging and monitoring tumor-activated photodynamic therapy. Chinese Chemical Letters, 2025, 36(5): 110119-. doi: 10.1016/j.cclet.2024.110119

    11. [11]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    12. [12]

      Min LiuBin FengFeiyi ChuDuoyang FanFan ZhengFei ChenWenbin Zeng . An ESIPT-boosted NIR nanoprobe for ratiometric sensing of carbon monoxide via activatable aggregation-induced dual-color fluorescence. Chinese Chemical Letters, 2025, 36(5): 110043-. doi: 10.1016/j.cclet.2024.110043

    13. [13]

      Boran ChengLei CaoChen LiFang-Yi HuoQian-Fang MengGanglin TongXuan WuLin-Lin BuLang RaoShubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969

    14. [14]

      Zhixue LiuHaiqi ChenLijuan GuoXinyao SunZhi-Yuan ZhangJunyi ChenMing DongChunju Li . Luminescent terphen[3]arene sulfate-activated FRET assemblies for cell imaging. Chinese Chemical Letters, 2024, 35(9): 109666-. doi: 10.1016/j.cclet.2024.109666

    15. [15]

      Qian RenXue DaiRan CenYang LuoMingyang LiZiyun ZhangQinghong BaiZhu TaoXin Xiao . A cucurbit[8]uril-based supramolecular phosphorescent assembly: Cell imaging and sensing of amino acids in aqueous solution. Chinese Chemical Letters, 2024, 35(12): 110022-. doi: 10.1016/j.cclet.2024.110022

    16. [16]

      Yiling LiZekun GaoXiuxiu YueMinhuan LanXiuli ZhengBenhua WangShuang ZhaoXiangzhi Song . FRET-based two-photon benzo[a] phenothiazinium photosensitizer for fluorescence imaging-guided photodynamic therapy. Chinese Chemical Letters, 2024, 35(7): 109133-. doi: 10.1016/j.cclet.2023.109133

    17. [17]

      Peide ZhuYangjia LiuYaoyao TangSiqi ZhuXinyang LiuLei YinQuan LiuZhiqiang YuQuan XuDixian LuoJuncheng Wang . Bi-doped carbon quantum dots functionalized liposomes with fluorescence visualization imaging for tumor diagnosis and treatment. Chinese Chemical Letters, 2024, 35(4): 108689-. doi: 10.1016/j.cclet.2023.108689

    18. [18]

      Kangmin WangLiqiu WanJingyu WangChunlin ZhouKe YangLiang ZhouBijin Li . Multifunctional 2-(2′-hydroxyphenyl)benzoxazoles: Ready synthesis, mechanochromism, fluorescence imaging, and OLEDs. Chinese Chemical Letters, 2024, 35(10): 109554-. doi: 10.1016/j.cclet.2024.109554

    19. [19]

      Biao HuangTao TangFushou LiuShi-Hui ChenZhi-Ling ZhangMingxi ZhangRan Cui . Quantum dots boost large-view NIR-Ⅱ imaging with high fidelity for fluorescence-guided tumor surgery. Chinese Chemical Letters, 2024, 35(12): 109694-. doi: 10.1016/j.cclet.2024.109694

    20. [20]

      Du LiuYuyan LiHankun ZhangBenhua WangChaoyi YaoMinhuan LanZhanhong YangXiangzhi Song . Three-in-one erlotinib-modified NIR photosensitizer for fluorescence imaging and synergistic chemo-photodynamic therapy. Chinese Chemical Letters, 2025, 36(2): 109910-. doi: 10.1016/j.cclet.2024.109910

Metrics
  • PDF Downloads(5)
  • Abstract views(1246)
  • HTML views(65)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return