Citation: Peng Suhong, Zhou Rong, Zou Huaibo. Research Progress in N-Confused Porphyrins[J]. Chinese Journal of Organic Chemistry, ;2019, 39(12): 3384-3398. doi: 10.6023/cjoc201904013 shu

Research Progress in N-Confused Porphyrins

  • Corresponding author: Peng Suhong, 410869356@qq.com
  • Received Date: 5 April 2019
    Revised Date: 27 June 2019
    Available Online: 1 December 2019

    Fund Project: the Science and Technology Research Project of Education Commission of Jiangxi Province GJJ180861the Doctoral Research Stratup Fund of Yichun University 113-3350100050the 2018 Local Development Research Center Project of Yichun University DF2018021Project supported by the 2018 Local Development Research Center Project of Yichun University (No. DF2018021), the Science and Technology Research Project of Education Commission of Jiangxi Province (No. GJJ180861) and the Doctoral Research Stratup Fund of Yichun University (No. 113-3350100050)

Figures(6)

  • N-Confused porphyrin, as the typical representative of porphyrinoids, is an isomer of porphyrin. It is an important member of porphyrins, which has attracted extensive attention of chemists recently because of its unique chemical structure and reactivity. Significance, structures and properties of N-confused porphyrins are briefly introduced. Progress in the synthesis of N-confused porphyrins and their applications in the area of catalytic chemistry, biological chemistry and materials chemistry are reviewed emphatically. The development status of expanded N-confused porphyrins and other confused porphyrinoids are also briefly introduced. Further development of N-confused porphyrin chemisty is proposed in the end.
  • 加载中
    1. [1]

      Senge, M. O. Angew. Chem., Int. Ed. 2011, 50, 4272.  doi: 10.1002/anie.201003660

    2. [2]

      Chmielewski, P. J.; Latos-Grażyński, L.; Rachlewicz, K.; Glowiak, T. Angew.Chem., Int. Ed. 1994, 33, 779.  doi: 10.1002/anie.199407791

    3. [3]

      Furuta, H.; Asano, T.; Ogawa, T. J. Am. Chem. Soc. 1994, 116, 767.  doi: 10.1021/ja00081a047

    4. [4]

      Li, X. F.; Liu, H. C.; Zhang, A. T.; Yu, X. Y.; Yi, P. G. Chin. J. Org. Chem. 2011, 31, 166 (in Chinese).
       

    5. [5]

      Harvey, J. D.; Ziegler, C. J. J. Inorg. Biochem. 2006, 100, 869.  doi: 10.1016/j.jinorgbio.2006.01.016

    6. [6]

      Niino, T.; Toganoh, M.; Andrioletti, B.; Furuta, H. Chem. Commun. 2006, 4335.
       

    7. [7]

      Thomas, A. P.; Saneesh Babu, P. S.; Asha Nair, S.; Ramakrishnan, S.; Ramaiah, D.; Chandrashekar, T. K.; Srinivasan, A.; Radha- krishna-Pillai, M. J. Med. Chem. 2012, 55, 5110.  doi: 10.1021/jm300009q

    8. [8]

      Yamamoto, T.; Toganoh, M.; Furuta, H. Dalton Trans. 2012, 41, 9154.  doi: 10.1039/c2dt30885a

    9. [9]

      Yu, X.; Lu, S.; Yang, Y.; Li, X.; Yi, P. Spectrochim. Acta, Part A 2011, 83, 609.  doi: 10.1016/j.saa.2011.09.014

    10. [10]

      Collman, J. P.; Boulatov, R.; Sunderland, C. J.; Fu, L. Chem. Rev. 2004, 104, 561.  doi: 10.1021/cr0206059

    11. [11]

      Larsen, R. W.; Omdal, D. H.; Jasuja, R.; Niu, S. L.; Jameson, D. M. J. Phys. Chem. B 1997, 101, 8012.  doi: 10.1021/jp9640235

    12. [12]

      Kang, S. A.; Marjavaara, P. J.; Crane, B. R. J. Am. Chem. Soc. 2004, 126, 10836.
       

    13. [13]

      Yoshioka, S.; Tosha, T.; Takahashi, S.; Ishimori, K.; Hori, H.; Morishima, I. J. Am. Chem. Soc. 2002, 124, 14571.
       

    14. [14]

      Yang, R. H.; Wang, K. M.; Long, L. P.; Xiao, D.; Yang, X. H.; Tang, W. H. Anal. Chem. 2002, 74, 1088.  doi: 10.1021/ac010386b

    15. [15]

      Wang, Q. G.; Zeng, F. H.; Xie, Y. S.; Zhu, W. H. Prog. Chem. 2009, 21, 1523 (in Chinese).
       

    16. [16]

      Li, Q. Z.; Li, C. J.; Kim, J.; Ishida, M.; Li, X.; Gu, T. T.; Liang, X.; Zhu, W. H.; Ågren, H.; Kim, D. H.; Furuta, H.; Xie, Y. S. J. Am. Chem. Soc. 2019, 141, 5294.  doi: 10.1021/jacs.8b13148

    17. [17]

      Li, Q. Z.; Ishida, M.; Kai, H.; Gu, T. T.; Li, C. J.; Li, X.; Baryshnikov, G.; Liang, X.; Zhu, W. H.; Ågren, H.; Furuta, H.; Xie, Y. S. Angew. Chem., Int. Ed. 2019, 58, 5925.  doi: 10.1002/anie.201900010

    18. [18]

      Maurya, Y. K.; Noda, K.; Yamasumi, K.; Mori, S.; Uchiyama, T.; Kamitani, K.; Hirai, T.; Ninomiya, K.; Nishibori, M.; Hori, Y.; Shiota, Y.; Yoshizawa, K.; Ishida, M.; Furuta, H. J. Am. Chem. Soc. 2018, 140, 6883.  doi: 10.1021/jacs.8b01876

    19. [19]

      Li, C. J.; Zhang, J. L.; Song, J. X.; Xie, Y. S.; Jiang, J. Z. Sci. China, Chem. 2018, 61, 511.

    20. [20]

      Ding, Y. B.; Tang, Y. Y.; Zhu, W. L.; Xie, Y. S. Chem. Soc. Rev. 2015, 44, 1101.  doi: 10.1039/C4CS00436A

    21. [21]

      Liu, H.-Y.; Mahmood, M. H.; Qiu, S.-X.; Chang, C. K. Coord. Chem. Rev. 2013, 257, 1306.  doi: 10.1016/j.ccr.2012.12.017

    22. [22]

      Geier, G. R.; Haynes, D. M.; Lindsey, J. S. Org. Lett. 1999, 1, 1455.  doi: 10.1021/ol9910114

    23. [23]

      Geier, G. R.; Ciringh, Y.; Li, F.; Haynes, D. M.; Lindsey, J. S. Org. Lett. 2000, 2, 1745.  doi: 10.1021/ol005917h

    24. [24]

      Maeda, H.; Osuka, A.; Ishikawa, Y.; Aritome, I.; Hisaeda, Y.; Furuta, H. Org. Lett. 2003, 5, 1293.  doi: 10.1021/ol034227l

    25. [25]

      Fisher, J. M.; Kensy, V. K.; Geier, G. R. J. Org. Chem. 2017, 82, 4429.  doi: 10.1021/acs.joc.7b00195

    26. [26]

      Kitaoka, S.; Nobuoka, K.; Ishikawa, Y. Tetrahedron 2005, 61, 7678.  doi: 10.1016/j.tet.2005.05.097

    27. [27]

      dela Rosa, M. A. C.; Arco, S. D.; Hung, C.-H. J. Chin. Chem. Soc. (Weinheim, Ger.) 2012, 59, 633.  doi: 10.1002/jccs.201100498

    28. [28]

      Shaw, J. L.; Garrison, S. A.; Alemán, E. A.; Ziegler, C. J.; Modarelli, D. A. J. Org. Chem. 2004, 69, 7423.  doi: 10.1021/jo049199e

    29. [29]

      Xiao, Z.; Dolphin, D. Tetrahedron 2002, 58, 9111.  doi: 10.1016/S0040-4020(02)01097-9

    30. [30]

      Zhu, X.-J.; Jiang, F.-L.; Poon, C.-T.; Wong, W.-K.; Wong, W.-Y. Eur. J. Inorg. Chem. 2008, 2008, 3151.  doi: 10.1002/ejic.200800267

    31. [31]

      Schmidt, I. J.; Chmielewski, P. Tetrahedron Lett. 2001, 42, 6389.  doi: 10.1016/S0040-4039(01)01259-X

    32. [32]

      Wolff, S. A.; Alemán, E. A.; Banerjee, D.; Rinaldi, P. L.; Modarelli, D. A. J. Org. Chem. 2004, 69, 4571.  doi: 10.1021/jo049621r

    33. [33]

      Liu, B. Y.; Bruckner, C.; Dolphin, D. Chem. Commun. 1996, 2141.
       

    34. [34]

      Narayanan, N. S.; Sridevi, B.; Srinivasan, A.; Chandrashekar, T. K.; Roy, R. Tetrahedron Lett. 1998, 39, 7389.  doi: 10.1016/S0040-4039(98)01603-7

    35. [35]

      Acharya, R.; Paudel, L.; Joseph, J.; McCarthy, C. E.; Dudipala, V. R.; Modarelli, J. M.; Modarelli, D. A. J. Org. Chem. 2012, 77, 6043.  doi: 10.1021/jo300810n

    36. [36]

      Lash, T. D.; Richter, D. T.; Shiner, C. M. J. Org. Chem. 1999, 64, 7973.  doi: 10.1021/jo991019r

    37. [37]

      Furuta, H.; Morimoto, T.; Osuka, A. Org. Lett. 2003, 5, 1427.  doi: 10.1021/ol034172n

    38. [38]

      Morimoto, T.; Taniguchi, S.; Osuka, A.; Furuta, H. Eur. J. Org. Chem. 2005, 2005, 3887.  doi: 10.1002/ejoc.200500485

    39. [39]

      Toganoh, M.; Harada, N.; Morimoto, T.; Furuta, H. Chemistry 2007, 13, 2257.  doi: 10.1002/chem.200600776

    40. [40]

      Furuta, H.; Nanami, H.; Morimoto, T.; Ogawa, T.; Kral, V.; Sessler, J. L.; Lynch, V. Chem.-Asian J. 2008, 3, 592.  doi: 10.1002/asia.200700130

    41. [41]

      Toganoh, M.; Furuta, H. Chem. Commun. 2012, 48, 937.  doi: 10.1039/C1CC14633E

    42. [42]

      Arasasingham, R. D.; He, G. X.; Bruice, T. C. J. Am. Chem. Soc. 1993, 115, 7985.  doi: 10.1021/ja00071a008

    43. [43]

      Brule, E.; de Miguel, Y. R. Tetrahedron Lett. 2002, 43, 8555.  doi: 10.1016/S0040-4039(02)02063-4

    44. [44]

      Fields, K. B.; Engle, J. T.; Sripothongnak, S.; Kim, C.; Zhang, X. P.; Ziegler, C. J. Chem. Commun. 2011, 47, 749.  doi: 10.1039/C0CC03894F

    45. [45]

      Miyazaki, T.; Yamamoto, T.; Mashita, S.; Deguchi, Y.; Fukuyama, K.; Ishida, M.; Mori, S.; Furuta, H. Eur. J. Inorg. Chem. 2018, 203.
       

    46. [46]

      Peng, S. H.; Mahmood, M. H. R.; Zou, H. B.; Yang, S. B.; Liu, H. Y. J. Mol. Catal. A: Chem. 2014, 395, 180.  doi: 10.1016/j.molcata.2014.08.016

    47. [47]

      Miyazaki, T.; Fukuyama, K.; Mashita, S.; Deguchi, Y.; Yamamoto, T.; Ishida, M.; Mori, S.; Furuta, H. ChemPlusChem 2019, 84, 603.  doi: 10.1002/cplu.201800630

    48. [48]

      dela Cruz, J.; Ruamps, S.; Arco, S.; Hung, C. H. Dalton Trans. 2019, 48, 7527.  doi: 10.1039/C9DT00104B

    49. [49]

      Moriyama, S.; Ikawa, Y.; Furuta, H. Nucleic Acids Symp. Ser. 2007, 207.

    50. [50]

      Ikawa, Y.; Moriyama, S.; Harada, H.; Furuta, H. Org. Biomol. Chem. 2008, 6, 4157.  doi: 10.1039/b810171j

    51. [51]

      Du, Y. H.; Zhang, D.; Chen, W.; Zhang, M.; Zhou. Y. Y.; Zhou, X. Bioorg. Med. Chem. 2010, 18, 1111.  doi: 10.1016/j.bmc.2009.12.049

    52. [52]

      Wang, X. L. M.S. Thesis, Qufu Normal University, Qufu, 2015 (in Chinese). 

    53. [53]

      Dong, Y. S. M.S. Thesis, Qufu Normal University, Qufu, 2015 (in Chinese).

    54. [54]

      Yu, X. Y.; Liu, R. H.; Yi, R. Q.; Yang, F. X.; Huang, H. W.; Chen, J.; Ji, D. H.; Yang, Y.; Li, X. F.; Yi, P. G. Spectrochim. Acta, Part A 2011, 78, 1329.  doi: 10.1016/j.saa.2011.01.024

    55. [55]

      Yu, X. Y.; Lu, S. Y.; Yang, Y.; Li, X. F.; Yi, P. G. Spectrochim. Acta, Part A 2012, 91, 113.  doi: 10.1016/j.saa.2012.01.068

    56. [56]

      Lu, S. Y.; Yu, X. Y.; Yang, Y.; Li, X. F. Spectrochim. Acta, Part A 2012, 99, 116.  doi: 10.1016/j.saa.2012.09.012

    57. [57]

      Yu, X. Y.; Liao, Z. X.; Jiang, B. F.; Zheng, L. Y.; Li, X. F. Spectrochim. Acta, Part A 2014, 133, 372.  doi: 10.1016/j.saa.2014.05.085

    58. [58]

      Lu, J.; Liu, H. Y.; Shi, L.; Wang, X. L.; Ying, X.; Zhang, L.; Ji, L. N.; Zang, L. Q.; Chang, C. K. Chin. Chem. Lett. 2011, 22, 101.  doi: 10.1016/j.cclet.2010.09.005

    59. [59]

      Huang, J. T.; Wang, X. L.; Zhang, Y.; Mahmood, M. H. R.; Huang, Y. Y.; Ying, X.; Ji, L.N.; Liu, H. Y. Transition. Met. Chem. 2013, 38, 283.  doi: 10.1007/s11243-013-9689-5

    60. [60]

      Zhang, Y.; Wang, Q.; Wen, J. Y.; Wang, X. L.; Mahmood, M. H. R.; Ji, L. N.; Liu, H. Y. Chin. J. Chem. 2013, 31, 1321.  doi: 10.1002/cjoc.201300488

    61. [61]

      Peng, S. H.; Lü, B. B.; Ali., A.; Wang, J. M.; Ying, X.; Wang, H.; Liu, J. B.; Ji, L. N.; Liu, H. Y. J. Porphyrins. Phthalocyanines 2016, 20, 624.  doi: 10.1142/S1088424616500449

    62. [62]

      Savary, J. F.; Monnier, P.; Fontolliet, C.; Mizeret, J.; Wagnieres, G.; Braichotte, D.; vandenBergh, H. Arch. Otolaryngol. 1997, 123, 162.  doi: 10.1001/archotol.1997.01900020042006

    63. [63]

      Baas, P.; Saarnak, A. E.; Oppelaar, H.; Neering, H.; Stewart, F. A. Br. J. Dermatol. 2001, 145, 75.  doi: 10.1046/j.1365-2133.2001.04284.x

    64. [64]

      Manku, M.; Rice, D.; Milgrom, L. WO 2001/53300, 2001.

    65. [65]

      Won, D. H.; Toganoh, M.; Uno, H.; Furuta, H. Dalton Trans. 2009, 6151.

    66. [66]

      Toganoh, M.; Miyachi, H.; Akimaru, H.; Ito, F.; Nagamura, T.; Furuta, H. Org. Biomol. Chem. 2009, 7, 3027.  doi: 10.1039/b907775h

    67. [67]

      Xie, Y. S.; Morimoto, T.; Furuta, H. Angew. Chem., Int. Ed. 2006, 45, 6907.  doi: 10.1002/anie.200602481

    68. [68]

      Ding, Y. B.; Zhu, W. H.; Xie, Y. S. Chem. Rev. 2017, 117, 2203.  doi: 10.1021/acs.chemrev.6b00021

    69. [69]

      Gamelas, S. R. D.; Gomes, A. T. P. C.; Moura, N. M. M.; Faustino, M. A. F.; Cavaleiro, J. A. S.; Lodeiro, C.; Verίssimo, M. I. S.; Fernandes, T.; Daniel-da-Silva, A. L.; Gomes, M. T. S. R.; Neves, M. G. P. M. S. Molecules 2018, 23, 867.  doi: 10.3390/molecules23040867

    70. [70]

      Zhang, N. N.; Chen, J. Q.; Cheng, K.; Li, Y. J.; Wang, L.; Zheng, K. B.; Yang, Q. Q.; Li, D. J.; Yan, J. Y. Res. Chem. Intermed. 2017, 43, 2921.  doi: 10.1007/s11164-016-2803-5

    71. [71]

      Srinivasan, A.; Ishizuka, T.; Furuta, H. Angew. Chem., Int. Ed. 2004, 43, 876.  doi: 10.1002/anie.200352946

    72. [72]

      Srinivasan, A.; Ishizuka, T.; Maeda, H.; Furuta, H. Angew. Chem., Int. Ed. 2004, 43, 2951.  doi: 10.1002/anie.200453732

    73. [73]

      Gokulnath, S.; Yamaguchi, K.; Toganoh, M.; Mori, S.; Uno, H.; Furuta, H. Angew. Chem., Int. Ed. 2011, 50, 2302.  doi: 10.1002/anie.201006784

    74. [74]

      Srinivasan, A.; Ishizuka, T.; Osuka, A.; Furuta, H. J. Am. Chem. Soc. 2003, 125, 878.  doi: 10.1021/ja029018v

    75. [75]

      Xie, Y. S.; Yamaguchi, K.; Toganoh, M.; Uno, H.; Suzuki, M.; Mori, S.; Saito, S.; Osuka, A.; Furuta, H. Angew. Chem., Int. Ed. 2009, 48, 5496.  doi: 10.1002/anie.200900596

    76. [76]

      Mitsuno, K.; Yoshino, T.; Gupta, I.; Mori, S.; Karasawa, S.; Ishida, M.; Furuta, H. Angew. Chem., Int. Ed. 2017, 56, 14252.  doi: 10.1002/anie.201708253

    77. [77]

      Li, M.; Wei, P. C.; Ishida, M.; Li, X.; Savage, M.; Guo, R.; Ou, Z. P.; Yang, S. H.; Furuta, H.; Xie, Y. S. Angew. Chem., Int. Ed. 2016, 55, 3063.  doi: 10.1002/anie.201510879

    78. [78]

      Xie, Y. S.; Wei, P. C.; Li, X.; Hong, T.; Zhang, K.; Furuta, H. J. Am. Chem. Soc. 2013, 135, 19119.  doi: 10.1021/ja4112644

    79. [79]

      Shao, J. W.; Li, C. J.; Kong, J. H.; Jiang, H. R.; Zhao, S. L.; Li, M. Z.; Liang, X.; Zhu, W. L.; Xie, Y. S. Org. Lett. 2018, 20, 1941.  doi: 10.1021/acs.orglett.8b00478

    80. [80]

      Kong, J. H.; Shao, J. W.; Li, C. J.; Qi, D. D.; Li, M. Z.; Liang, X.; Zhu, W. H.; Jiang, J. Z.; Xie, Y. S. Org. Lett. 2017, 19, 650.  doi: 10.1021/acs.orglett.6b03816

    81. [81]

      Zhang, K.; Zhang, J. D.; Li, X.; Guo, R.; Ågren, H.; Ou, Z. P.; Ishida, M.; Furuta, H.; Xie, Y. S. Org. Lett. 2015, 17, 4806.  doi: 10.1021/acs.orglett.5b02363

    82. [82]

      Wei, P. C.; Zhang, K.; Li, X.; Meng, D. Y.; Ågren, H.; Ou, Z. P.; Ng, S.; Furuta, H.; Xie, Y. S. Angew. Chem., Int. Ed. 2014, 53, 14069.  doi: 10.1002/anie.201408307

    83. [83]

      Srinivasan, A.; Furuta, H. Acc. Chem. Res. 2005, 38, 10.  doi: 10.1021/ar0302686

  • 加载中
    1. [1]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    2. [2]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    3. [3]

      Wenli FENGLu ZHAOYunfeng BAIFeng FENG . Research progress on ultralong room temperature phosphorescent carbon dots. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308

    4. [4]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    5. [5]

      Yuyang Xu Ruying Yang Yanzhe Zhang Yandong Liu Keyi Li Zehui Wei . Research Progress of Aflatoxins Removal by Modern Optical Methods. University Chemistry, 2024, 39(11): 174-181. doi: 10.12461/PKU.DXHX202402064

    6. [6]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    7. [7]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    8. [8]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    9. [9]

      Tiantian Zheng Huiyi Wang Huimin Li Xuanhe Liu Hong Shang . Anti-Counterfeiting National Salvation Chronicle of 006. University Chemistry, 2024, 39(9): 254-258. doi: 10.3866/PKU.DXHX202307032

    10. [10]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    11. [11]

      Laiying Zhang Yaxian Zhu . Exploring the Silver Family. University Chemistry, 2024, 39(9): 1-4. doi: 10.12461/PKU.DXHX202409015

    12. [12]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    13. [13]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    14. [14]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    15. [15]

      Siran Wang Yinuo Wang Yilong Zhao Dazhen Xu . Advances in the Application and Preparation of Rhodanine and Its Derivatives. University Chemistry, 2025, 40(5): 318-327. doi: 10.12461/PKU.DXHX202407033

    16. [16]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    17. [17]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    18. [18]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    19. [19]

      Lewang Yuan Yaoyao Peng Zong-Jie Guan Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086

    20. [20]

      Huijuan Liao Yulin Xiao Dong Xue Mingyu Yang Jianyang Dong . Synthesis of 1-Benzyl Isoquinoline via the Minisci Reaction. University Chemistry, 2025, 40(7): 294-299. doi: 10.12461/PKU.DXHX202409092

Metrics
  • PDF Downloads(13)
  • Abstract views(1447)
  • HTML views(298)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return