Citation: Yan Meng, Peng Wenchang, Wang Hui, Zhang Danwei, Li Zhanting. Supramolecular Organic Framework Loading for Camptothecin Open-Ring Carboxylates and Their Lactonization Kinetics[J]. Chinese Journal of Organic Chemistry, ;2019, 39(9): 2567-2573. doi: 10.6023/cjoc201903071 shu

Supramolecular Organic Framework Loading for Camptothecin Open-Ring Carboxylates and Their Lactonization Kinetics

  • Corresponding author: Li Zhanting, ztli@fudan.edu.cn
  • Received Date: 29 March 2019
    Revised Date: 19 April 2019
    Available Online: 26 September 2019

    Fund Project: the National Natural Science Foundation of China 21890732the National Natural Science Foundation of China 21529201Project supported by the National Natural Science Foundation of China (Nos. 21432004, 21529201, 21890732)the National Natural Science Foundation of China 21432004

Figures(4)

  • Camptothecin derivatives exist mainly as inactive open ring carboxylates in physiological media. Tumor microenvironment is generally weakly acidic, whereas supramolecular organic frameworks can adsorb and deliver anionic antitumor drugs into tumor cells. In principle, supramolecular organic frameworks (SOFs) can adsorb and deliver camptothecin open ring carboxylates to tumor microenvironment and the delivered carboxylates can undergo lactonization to afford active molecules due to the weak acid character of the tumor microenvironment, which may lead to efficient utilization of the carboxylates as predrugs. To explore this potential, dialysis experiments for the open ring carboxylates of camptothecin, SN-38 and 10-hydroxycamptothecin in the presence of two SOFs were conducted, which revealed important adsorption and retaining capacity of the SOFs for the carboxylates. Absorption spectroscopy was also utilized to evaluate the lactonization kinetics of the three carboxylates in weakly acidic saline solution. The result reveals that at pH=6.5, the half lives of the conversion are 120, 22 and 31 h, respectively, which are considerably shorter than the time gap for repeated administrations of clinically used irinotican (14 d) or topotecan (21 d), which provides the experimental basis for further study.
  • 加载中
    1. [1]

    2. [2]

      (a) Martino, E.; Della Volpe, S.; Terribile, E.; Benetti, E.; Sakaj, M.; Centamore, A.; Sala, A.; Collina, S. Bioorg. Med. Chem. Lett. 2017, 27, 701.
      (b) Zunino, F.; Pratesi, G. Exp. Opin. Invest. Drugs 2004, 13, 269.

    3. [3]

      Pommier, Y. Nat. Rev. Cancer 2006, 6, 789.  doi: 10.1038/nrc1977

    4. [4]

      (a) Underberg, W. J.; Goossen, R. M.; Smith, B. R.; Beijnen, J. H. J. Pharm. Biomed. Anal. 1990, 8, 681.
      (b) van Warmerdam, L. J.; Verweij, J.; Schellens, J. H.; Rosing, H.; Davies, B. E.; de Boer-Dennert, M.; Maes, R. A.; Beijnen, J. H. Cancer Chemother. Pharmacol. 1995, 35, 237.
      (c) Rivory, L. P. Clin. Exp. Pharmacol. Physiol. 1996, 23, 1000.
      (d) Supko, J. G.; Malspeis, L. J. Liq. Chromatogr. 1991, 14, 1779.
      (e) Gabr, A.; Kuin, A.; Aalders, M.; El-Gawly, H.; Smets, L. A. Cancer Res. 1997, 57, 4811.

    5. [5]

      (a) Rowinsky, E. K.; Grochow, L. B.; Hendricks, C. B.; Ettinger, D. S.; Forastiere, A. A.; Hurowitz, L. A.; McGuire, W. P.; Sartorius, S. E.; Lubejko, B. G.; Kaufmann, S. H. J. Clin. Oncol. 1992, 10, 647.
      (b) Robert, J.; Rivory, L. Drugs Today 1998, 34, 777.

    6. [6]

      (a) Thomas, C. J.; Rahier, N. J.; Hecht, S. M. Bioorg. Med. Chem. 2004, 12, 1585.
      (b) Oberlies, N. H.; Kroll, D. J. J. Nat. Prod. 2004, 67, 129.
      (c) Yuan, Y.; Dong, W.; Gao, X.; Xie, X.; Curran, D. P.; Zhang, Z. Chin. J. Chem. 2018, 36, 1035.
      (d) Driver, R. W.; Yang, L.-X. Mini-Rev. Med. Chem. 2005, 5, 425.
      (e) Curran, D. P.; Josien, H.; Bom, D.; Gabarda, A. E.; Du, W. Ann. N. Y. Acad. Sci. 2000, 922, 112.

    7. [7]

      (a) Zhang, S. J. Drug Delivery Ther. 2017, 7, 76.
      (b) Palakurthi, S. Exp. Opin. Drug Delivery 2015, 12, 1911.
      (c) Botella, P.; Rivero-Buceta, E. J. Controlled Release 2017, 247, 28.
      (d) Ni, S. J. Drug Delivery Ther. 2017, 7, 73.
      (e) Bala, V.; Rao, S.; Boyd, B. J.; Prestidge, C. A. J. Controlled Release 2013, 172, 48.
      (f) Venditto, V. J.; Simanek, E. E. Mol. Pharmaceutics 2010, 7, 307.

    8. [8]

      (a) Ri, M.; Suzuki, K.; Iida, S.; Hatake, K.; Chou, T.; Taniwaki, M.; Watanabe, N.; Tsukamoto, T. Intern. Med. 2018, 57, 939.
      (b) Hamaguchi, T.; Tsuji, A.; Yamaguchi, K.; Takeda, K.; Uetake, H.; Esaki, T.; Amagai, K.; Sakai, D.; Baba, H.; Kimura, M.; Matsumura, Y.; Tsukamoto, T. Cancer Chemother. Pharmacol. 2018, 82, 1021.

    9. [9]

      Tran, S.; DeGiovanni, P.-J.; Piel, B.; Rai, P. Clin. Trans. Med. 2017, 6, 44.  doi: 10.1186/s40169-017-0175-0

    10. [10]

    11. [11]

    12. [12]

      (a) Tian, J.; Zhou, T.-Y.; Zhang, S.-C.; Aloni, S.; Altoe, M. V.; Xie, S.-H.; Wang, H.; Zhang, D.-W.; Zhao, X.; Liu, Y.; Li, Z.-T. Nat. Commun. 2014, 5, 5574.
      (b) Wu, Y.-P.; Yang, B.; Tian, J.; Yu, S.-B.; Wang, H.; Zhang, D.-W.; Liu, Y.; Li, Z.-T. Chem. Commun. 2017, 53, 13367.

    13. [13]

    14. [14]

    15. [15]

      (a) Tian, J.; Xu, Z.-Y.; Zhang, D.-W.; Wang, H.; Xie, S.-H.; Xu, D.-W.; Ren, Y.-H.; Wang, H.; Liu, Y.; Li, Z.-T. Nat. Commun. 2016, 7, 11580.
      (b) Yu, S.-B.; Qi, Q.; Yang, B.; Wang, H.; Zhang, D.-W.; Liu, Y.; Li, Z.-T. Small 2018, 14, 1801037.

    16. [16]

      (a) Liu, J.; Huang, Y.; Kumar, A. K.; Tan, A.; Jin, S.; Mozhi, A.; Liang, X.-J. Biotechnol. Adv. 2014, 32, 693.
      (b) Gillies, E. R.; Goodwin, A. P.; Fréchet, J. M. Bioconjugate Chem. 2004, 15, 1254.
      (c) Lu, Y.; Aimetti, A. A.; Langer, R.; Gu, Z. Nat. Rev. Mater. 2016, 2, 16075.

    17. [17]

      (a) Zhu, J.; Jin, Z.-M. Pharm. Chem. J. 2017, 51, 491.
      (b) Chang, S.; Xie, L.; Ding H.; Nie, Y.; Wu, Y.; He, B.; Gu, Z. Pharm. Nanotechnol. 2013, 1, 115.
      (c) Zhang, J. A.; Xuan, T.; Parmar, M.; Ma, L.; Ugwu, S.; Ali, S.; Ahmad, I. Int. J. Pharm. 2004, 270, 93.
      (d) Beretta, G. L.; Zunino, F. Biochem. Pharmacol. 2007, 74, 1437.
      (e) Oguma, T. J. Chromatogr. B 2001, 764, 49.
      (f) Herben, V. M. M.; Ten, B.; Huinink, W. W.; Beijnen, J. H. Clin. Pharmacokinet. 1996, 31, 85.

    18. [18]

      Yan, M.; Liu, X.-B.; Gao, Z.-Z.; Wu, Y.-P.; Hou, J-L.; Wang, H.; Zhang, D.-W.; Liu, Y.; Li, Z.-T. Org. Chem. Front. 2019, 6, 1698.  doi: 10.1039/C9QO00382G

  • 加载中
    1. [1]

      Zhilian Liu Wengui Wang Hongxiao Yang Yu Cui Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012

    2. [2]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    3. [3]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    4. [4]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    5. [5]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    6. [6]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    7. [7]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    8. [8]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    9. [9]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    10. [10]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    11. [11]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    12. [12]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    13. [13]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    14. [14]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    15. [15]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    16. [16]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    17. [17]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    18. [18]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    19. [19]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    20. [20]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

Metrics
  • PDF Downloads(7)
  • Abstract views(1162)
  • HTML views(221)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return