Citation: Liu Yiyi, Zhou Rong. Progress in Annulation Reactions Based on Huisgen Zwitterion[J]. Chinese Journal of Organic Chemistry, ;2019, 39(9): 2365-2378. doi: 10.6023/cjoc201903041 shu

Progress in Annulation Reactions Based on Huisgen Zwitterion

  • Corresponding author: Liu Yiyi, liuyy_chem@163.com Zhou Rong, zhourong@tyut.edu.cn
  • Received Date: 21 March 2019
    Revised Date: 20 April 2019
    Available Online: 6 September 2019

    Fund Project: the National Natural Science Foundation of China (No. 21502135), the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province (No. 201802024)the National Natural Science Foundation of China 21502135the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province 201802024

Figures(35)

  • The development of highly efficient and selective synthetic methodologies is an important research task in organic chemistry. In recent years, the Huisgen zwitterions, a type of intermediates derived from nucleophilic addition of tertiary phosphine to azodicarboxylates, have shown unique superiority and efficiency in synthesis of azacyclic compounds, and therefore have attracted broad interest from organic chemists. A large number of annulation reactions based on Huisgen zwitterions have been reported. According to the types of electrophiles, the annulation reactions of Husigen zwitterions with carbonyl compounds, electron-deficient alkenes, imines, and other electrophiles are summarized, respectively.
  • 加载中
    1. [1]

      Cadogan, J. I. G. Organophosphorus Reagents in Organic Synthesis, Academic Press, London, 1979.

    2. [2]

      (a) Ye, L. -W.; Zhou, J.; Tang, Y. Chem. Soc. Rev. 2008, 37, 1140.
      (b) Cowen, B. J.; Miller, S. J. Chem. Soc. Rev. 2009, 38, 3102.
      (c) Marinetti, A.; Voituriez, A. Synlett 2010, 174.
      (d) Wang, S.; Han, X.; Zhong, F.; Wang, Y.; Lu, Y. Synlett 2011, 2766.
      (e) Zhao, Q.-Y.; Lian, Z.; Wei, Y.; Shi, M. Chem. Commun. 2012, 48, 1724.
      (f) Fan, Y.-C.; Kwon, O. Chem. Commun. 2013, 49, 11588.
      (g) Wang, Z.; Xu, X.; Kwon, O. Chem. Soc. Rev. 2014, 43, 2927.
      (h) Xiao, Y.; Sun, Z.; Guo, H.; Kwon, O. Beilstein J. Org. Chem. 2014, 10, 2089.
      (i) Xie, P.; Huang, Y. Org. Biomol. Chem. 2015, 13, 8578.
      (j) Xiao, Y.; Guo, H.; Kwon, O. Aldrichim. Acta 2016, 49, 3.
      (k) Wang, T.; Han, X.; Zhong, F.; Yao, W.; Lu, Y. Acc. Chem. Res. 2016, 49, 1369.
      (l) Zhou, R.; He, Z. Eur. J. Org. Chem. 2016, 1937.

    3. [3]

    4. [4]

      Quin, L. D. A Guide to Organophosphorus Chemistry, Wiley, New York, 2000, p. 379.

    5. [5]

      Maryanoff, B. E.; Reitz, A. B. Chem. Rev. 1989, 89, 863.  doi: 10.1021/cr00094a007

    6. [6]

      Swamy, K. C. K.; Kumar, N. N. B.; Balaraman, E.; Kumar, K. Chem. Rev. 2009, 109, 2551.  doi: 10.1021/cr800278z

    7. [7]

      Gololobov, Y. G.; Kasukhin, L. F. Tetrahedron 1992, 48, 1353.  doi: 10.1016/S0040-4020(01)92229-X

    8. [8]

      Appel, R. Angew. Chem., Int. Ed. 1975, 14, 801.  doi: 10.1002/anie.197508011

    9. [9]

      (a) Huisgen, R.; Blaschke, H.; Brunn, E. Tetrahedron Lett. 1966, 7, 405.
      (b) Brunn, E.; Huisgen, R. Angew. Chem., Int. Ed. 1969, 8, 513.
      (c) Itzstein, M. v.; Jenkins, I. D. Aust. J. Chem. 1983, 36, 557.
      (d) Monge, D.; Jensen, K. L.; Marín, I.; Jø rgensen, K. A. Org. Lett. 2011, 13, 328.

    10. [10]

      Nair, V.; Menon, R. S.; Sreekanth, A. R.; Abhilash, N.; Biju, A. T. Acc. Chem. Res. 2006, 39, 520.  doi: 10.1021/ar0502026

    11. [11]

      Nair, V.; Biju, A. T.; Mathew, S. C.; Babu, B. P. Chem. Asian J. 2008, 3, 810.  doi: 10.1002/asia.200700341

    12. [12]

      Košmrlj, J.; Kočevar, M.; Polanc, S. Synlett 2009, 2217.

    13. [13]

      Cookson, R. C.; Locke, J. M. J. Chem. Soc. 1963, 6062.

    14. [14]

      Kolasa, T.; Miller, M. J. J. Org. Chem.1987, 52, 4978.  doi: 10.1021/jo00231a026

    15. [15]

      Otte, R. D.; Sakata, T.; Guzei, I. A.; Lee, D. Org. Lett. 2005, 7, 495.  doi: 10.1021/ol051956n

    16. [16]

      (a) Lu, X.; Zhang, C.; Xu, Z. Acc. Chem. Res. 2001, 34, 535.
      (b) Wei, Y.; Shi, M. Acc. Chem. Res. 2010, 43, 1005.
      (c) Huang, Y.; Xie, P. Eur. J. Org. Chem. 2013, 6213.
      (d) Wei, Y.; Shi, M. Chem. Rev. 2013, 113, 6659.
      (e) Li, W.; Zhang, J. Chem. Soc. Rev. 2016, 45, 1657.

    17. [17]

      Nair, V.; Biju, A. T.; Vinod, A. U.; Suresh, E. Org. Lett. 2005, 7, 5139.  doi: 10.1021/ol051956n

    18. [18]

      Dogan, H. N.; Duran, A.; Rollas, S.; Sener, G.; Armutak, Y.; Keyer Uysal, M. Med. Sci. Res. 1998, 26, 755.
       

    19. [19]

      Wang, Z.-D.; Dong, N.; Wang, F.; Li, X.; Cheng, J.-P. Tetrahedron Lett. 2013, 54, 5473.  doi: 10.1016/j.tetlet.2013.07.129

    20. [20]

      Nair, V.; Mathew, S. C.; Biju, A. T.; Suresh, E. Angew. Chem., Int. Ed. 2007, 46, 2070.  doi: 10.1002/anie.200604025

    21. [21]

      (a) Elguero, J. In Comprehensive Heterocyclic Chemistry, Vol. 5, Eds.: Katritzky, A. R.; Rees, C. W.; Potts, K. T., Pergamon, Oxford, 1984, p. 167.
      (b) Elguero, J. In Comprehensive Heterocyclic Chemistry Ⅱ, Vol. 3, Eds.: Katritzky, A. R.; Rees, C. W.; Scriven, E. F. V., Pergamon, Oxford, 1996, p. 1.

    22. [22]

      (a) BraLa, M. F.; Cacho, M.; GarcMa, M. L.; Mayoral, E. P.; LNpez, B.; Pascual-Teresa, B.; Ramos, A.; Acero, N.; Llinares, F.; MuLozMingarro, D.; Lozach, O.; Meijer, L. J. Med. Chem. 2005, 48, 6843.
      (b) Witherington, J.; Bordas, V.; Haigh, D.; Hickey, D. M. B.; Ife, R. J.; Rawlings, A. D.; Slingsby, B. P.; Smith, D. G.; Ward, R. W. Bioorg. Med. Chem. Lett. 2003, 13, 1581.
      (c) Tewari, A. K.; Mishra, A. Bioorg. Med. Chem. 2001, 9, 715.

    23. [23]

      Liu, W.; Khedkar, V.; Baskar, B.; Schürmann, M.; Kumar, K. Angew. Chem., Int. Ed. 2011, 50, 6900.  doi: 10.1002/anie.201102440

    24. [24]

      Baskar, B.; Wittstein, K.; Sankar, M. G.; Khedkar, V.; Schürmann, M.; Kumar, K. Org. Lett. 2012, 14, 5924.  doi: 10.1021/ol3028412

    25. [25]

      Papafilippou, A.; Terzidis, M. A.; S.-S.Julia.; Tsoleridis, C. A. Tetrahedron Lett. 2011, 52, 1306.  doi: 10.1016/j.tetlet.2011.01.063

    26. [26]

      (a) McCleverty, J. A.; Meyer, T. J. Comprehensive Coordination Chemistry Ⅱ, Elsevier Ltd, Boston, 2003.
      (b) Tang, W.; Zhang, X. Chem. Rev. 2003, 103, 3029.
      (c) Bö rner, A. Phosphorus Ligands in Asymmetric Catalysis, Wiley-VCH, Weinheim, Germany, 2008.
      (d) Zhou, Q.-L. Privileged Chiral Ligands and Catalysts, Wiley- VCH, Weinheim, Germany, 2011.
      (e) Zhang, C.; Lu, X. J. Org. Chem. 1995, 60, 2906.

    27. [27]

      Nair, V.; Biju, A. T.; Mohanan, K.; Suresh, E. Org. Lett. 2006, 8, 2213.  doi: 10.1021/ol0604623

    28. [28]

      Chakravarty, M.; Kumar, N. N. B; Sajna, K. V.; Swamy, K. C. K. Eur. J. Org. Chem. 2008, 4500.
       

    29. [29]

      Lü, R.; Cheng, X.; Zheng, X.; Ma, S. Chem. Commun. 2014, 50, 1537.  doi: 10.1039/c3cc48215d

    30. [30]

      (a) Kazmo, Y.; Akira, M.; Norihiko, M.; Toshiio, M.; Kazutaka, A. Shigera, I. Pestic. Sci. 1999, 55, 161.
      (b) Gursoy, A.; Demirayak, M. S.; Ç apan, G.; Erol, K.; Vural, K. Eur. J. Med. Chem. 2000, 35, 359.
      (c) Badawey, E. A. M.; El-Ashmawey, I. M. Eur. J. Med. Chem. 1998, 33, 349.

    31. [31]

      Yamazaki, S.; Maenaka, Y.; Fujinami, K.; Mikata, Y. RSC Adv. 2012, 2, 8095.  doi: 10.1039/c2ra21249h

    32. [32]

      Yang, C.; Li J.; Zhou, R.; Chen, X.; Gao, Y.; He, Z. Org. Biomol. Chem. 2015, 13, 4869.  doi: 10.1039/C5OB00258C

    33. [33]

      Yang, C.; Chen, X.; Tang, T.; He, Z. Org. Lett. 2016, 18, 1486.  doi: 10.1021/acs.orglett.6b00456

    34. [34]

      Li, Y.; Zhang, H.; Wei, R.; Miao, Z. Adv. Synth. Catal. 2017, 359, 4158.  doi: 10.1002/adsc.201701013

    35. [35]

      Lian, Z.; Guan, X.-Y.; Shi, M. Tetrahedron 2011, 67, 2018.  doi: 10.1016/j.tet.2011.01.072

    36. [36]

      Sankar, M. G.; Garcia-Castro, M.; Wang, Y.; Kumar, K. Asian J. Org. Chem. 2013, 2, 646.  doi: 10.1002/ajoc.201300120

    37. [37]

      Alizadeh, A. Helv. Chim. Acta 2005, 88, 2777.  doi: 10.1002/hlca.200590218

    38. [38]

      Cui, S.-L.; Wang, J.; Wang, Y.-G. Org. Lett. 2008, 10, 13.  doi: 10.1021/ol7022888

    39. [39]

      Sun, Y.; Jiang, Z.; Hong, D.; Lu, P.; Wang, Y.; Lin, X. Tetrahedron 2010, 66, 2427.  doi: 10.1016/j.tet.2010.01.087

    40. [40]

      Zhang, W.; Zhu, Y.; Wei, D.; Tang, M. J. Comput. Chem. 2012, 33, 715.  doi: 10.1002/jcc.22906

    41. [41]

      Saha, J.; Lorenc, C.; Surana, B.; Peczuh, M. W. J. Org. Chem. 2012, 77, 3846.  doi: 10.1021/jo3001854

    42. [42]

      Yang, C.; Liu, W.; He, Z.; He, Z. Org. Lett. 2016, 18, 4936.  doi: 10.1021/acs.orglett.6b02415

  • 加载中
    1. [1]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    2. [2]

      Caixia Lin Ting Liu Zhaojiang Shi Hong Yan Keyin Ye Yaofeng Yuan . Innovative Experiment of Electrochemical Dearomative Spirocyclization of N-Acyl Sulfonamides. University Chemistry, 2025, 40(4): 359-366. doi: 10.12461/PKU.DXHX202406107

    3. [3]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    4. [4]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    5. [5]

      Xinghai Liu Hongke Wu . Exploration and Practice of Ideological and Political Education in Heterocyclic Chemistry Based on "Fentanyl" Event. University Chemistry, 2024, 39(8): 359-364. doi: 10.3866/PKU.DXHX202312100

    6. [6]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    7. [7]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    8. [8]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    9. [9]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    10. [10]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    11. [11]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    12. [12]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    13. [13]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    14. [14]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    15. [15]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    16. [16]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    17. [17]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    18. [18]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    19. [19]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    20. [20]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

Metrics
  • PDF Downloads(25)
  • Abstract views(1505)
  • HTML views(248)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return