Citation: Liu Yiyi, Zhou Rong. Progress in Annulation Reactions Based on Huisgen Zwitterion[J]. Chinese Journal of Organic Chemistry, ;2019, 39(9): 2365-2378. doi: 10.6023/cjoc201903041 shu

Progress in Annulation Reactions Based on Huisgen Zwitterion

  • Corresponding author: Liu Yiyi, liuyy_chem@163.com Zhou Rong, zhourong@tyut.edu.cn
  • Received Date: 21 March 2019
    Revised Date: 20 April 2019
    Available Online: 6 September 2019

    Fund Project: the National Natural Science Foundation of China (No. 21502135), the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province (No. 201802024)the National Natural Science Foundation of China 21502135the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province 201802024

Figures(35)

  • The development of highly efficient and selective synthetic methodologies is an important research task in organic chemistry. In recent years, the Huisgen zwitterions, a type of intermediates derived from nucleophilic addition of tertiary phosphine to azodicarboxylates, have shown unique superiority and efficiency in synthesis of azacyclic compounds, and therefore have attracted broad interest from organic chemists. A large number of annulation reactions based on Huisgen zwitterions have been reported. According to the types of electrophiles, the annulation reactions of Husigen zwitterions with carbonyl compounds, electron-deficient alkenes, imines, and other electrophiles are summarized, respectively.
  • 加载中
    1. [1]

      Cadogan, J. I. G. Organophosphorus Reagents in Organic Synthesis, Academic Press, London, 1979.

    2. [2]

      (a) Ye, L. -W.; Zhou, J.; Tang, Y. Chem. Soc. Rev. 2008, 37, 1140.
      (b) Cowen, B. J.; Miller, S. J. Chem. Soc. Rev. 2009, 38, 3102.
      (c) Marinetti, A.; Voituriez, A. Synlett 2010, 174.
      (d) Wang, S.; Han, X.; Zhong, F.; Wang, Y.; Lu, Y. Synlett 2011, 2766.
      (e) Zhao, Q.-Y.; Lian, Z.; Wei, Y.; Shi, M. Chem. Commun. 2012, 48, 1724.
      (f) Fan, Y.-C.; Kwon, O. Chem. Commun. 2013, 49, 11588.
      (g) Wang, Z.; Xu, X.; Kwon, O. Chem. Soc. Rev. 2014, 43, 2927.
      (h) Xiao, Y.; Sun, Z.; Guo, H.; Kwon, O. Beilstein J. Org. Chem. 2014, 10, 2089.
      (i) Xie, P.; Huang, Y. Org. Biomol. Chem. 2015, 13, 8578.
      (j) Xiao, Y.; Guo, H.; Kwon, O. Aldrichim. Acta 2016, 49, 3.
      (k) Wang, T.; Han, X.; Zhong, F.; Yao, W.; Lu, Y. Acc. Chem. Res. 2016, 49, 1369.
      (l) Zhou, R.; He, Z. Eur. J. Org. Chem. 2016, 1937.

    3. [3]

    4. [4]

      Quin, L. D. A Guide to Organophosphorus Chemistry, Wiley, New York, 2000, p. 379.

    5. [5]

      Maryanoff, B. E.; Reitz, A. B. Chem. Rev. 1989, 89, 863.  doi: 10.1021/cr00094a007

    6. [6]

      Swamy, K. C. K.; Kumar, N. N. B.; Balaraman, E.; Kumar, K. Chem. Rev. 2009, 109, 2551.  doi: 10.1021/cr800278z

    7. [7]

      Gololobov, Y. G.; Kasukhin, L. F. Tetrahedron 1992, 48, 1353.  doi: 10.1016/S0040-4020(01)92229-X

    8. [8]

      Appel, R. Angew. Chem., Int. Ed. 1975, 14, 801.  doi: 10.1002/anie.197508011

    9. [9]

      (a) Huisgen, R.; Blaschke, H.; Brunn, E. Tetrahedron Lett. 1966, 7, 405.
      (b) Brunn, E.; Huisgen, R. Angew. Chem., Int. Ed. 1969, 8, 513.
      (c) Itzstein, M. v.; Jenkins, I. D. Aust. J. Chem. 1983, 36, 557.
      (d) Monge, D.; Jensen, K. L.; Marín, I.; Jø rgensen, K. A. Org. Lett. 2011, 13, 328.

    10. [10]

      Nair, V.; Menon, R. S.; Sreekanth, A. R.; Abhilash, N.; Biju, A. T. Acc. Chem. Res. 2006, 39, 520.  doi: 10.1021/ar0502026

    11. [11]

      Nair, V.; Biju, A. T.; Mathew, S. C.; Babu, B. P. Chem. Asian J. 2008, 3, 810.  doi: 10.1002/asia.200700341

    12. [12]

      Košmrlj, J.; Kočevar, M.; Polanc, S. Synlett 2009, 2217.

    13. [13]

      Cookson, R. C.; Locke, J. M. J. Chem. Soc. 1963, 6062.

    14. [14]

      Kolasa, T.; Miller, M. J. J. Org. Chem.1987, 52, 4978.  doi: 10.1021/jo00231a026

    15. [15]

      Otte, R. D.; Sakata, T.; Guzei, I. A.; Lee, D. Org. Lett. 2005, 7, 495.  doi: 10.1021/ol051956n

    16. [16]

      (a) Lu, X.; Zhang, C.; Xu, Z. Acc. Chem. Res. 2001, 34, 535.
      (b) Wei, Y.; Shi, M. Acc. Chem. Res. 2010, 43, 1005.
      (c) Huang, Y.; Xie, P. Eur. J. Org. Chem. 2013, 6213.
      (d) Wei, Y.; Shi, M. Chem. Rev. 2013, 113, 6659.
      (e) Li, W.; Zhang, J. Chem. Soc. Rev. 2016, 45, 1657.

    17. [17]

      Nair, V.; Biju, A. T.; Vinod, A. U.; Suresh, E. Org. Lett. 2005, 7, 5139.  doi: 10.1021/ol051956n

    18. [18]

      Dogan, H. N.; Duran, A.; Rollas, S.; Sener, G.; Armutak, Y.; Keyer Uysal, M. Med. Sci. Res. 1998, 26, 755.
       

    19. [19]

      Wang, Z.-D.; Dong, N.; Wang, F.; Li, X.; Cheng, J.-P. Tetrahedron Lett. 2013, 54, 5473.  doi: 10.1016/j.tetlet.2013.07.129

    20. [20]

      Nair, V.; Mathew, S. C.; Biju, A. T.; Suresh, E. Angew. Chem., Int. Ed. 2007, 46, 2070.  doi: 10.1002/anie.200604025

    21. [21]

      (a) Elguero, J. In Comprehensive Heterocyclic Chemistry, Vol. 5, Eds.: Katritzky, A. R.; Rees, C. W.; Potts, K. T., Pergamon, Oxford, 1984, p. 167.
      (b) Elguero, J. In Comprehensive Heterocyclic Chemistry Ⅱ, Vol. 3, Eds.: Katritzky, A. R.; Rees, C. W.; Scriven, E. F. V., Pergamon, Oxford, 1996, p. 1.

    22. [22]

      (a) BraLa, M. F.; Cacho, M.; GarcMa, M. L.; Mayoral, E. P.; LNpez, B.; Pascual-Teresa, B.; Ramos, A.; Acero, N.; Llinares, F.; MuLozMingarro, D.; Lozach, O.; Meijer, L. J. Med. Chem. 2005, 48, 6843.
      (b) Witherington, J.; Bordas, V.; Haigh, D.; Hickey, D. M. B.; Ife, R. J.; Rawlings, A. D.; Slingsby, B. P.; Smith, D. G.; Ward, R. W. Bioorg. Med. Chem. Lett. 2003, 13, 1581.
      (c) Tewari, A. K.; Mishra, A. Bioorg. Med. Chem. 2001, 9, 715.

    23. [23]

      Liu, W.; Khedkar, V.; Baskar, B.; Schürmann, M.; Kumar, K. Angew. Chem., Int. Ed. 2011, 50, 6900.  doi: 10.1002/anie.201102440

    24. [24]

      Baskar, B.; Wittstein, K.; Sankar, M. G.; Khedkar, V.; Schürmann, M.; Kumar, K. Org. Lett. 2012, 14, 5924.  doi: 10.1021/ol3028412

    25. [25]

      Papafilippou, A.; Terzidis, M. A.; S.-S.Julia.; Tsoleridis, C. A. Tetrahedron Lett. 2011, 52, 1306.  doi: 10.1016/j.tetlet.2011.01.063

    26. [26]

      (a) McCleverty, J. A.; Meyer, T. J. Comprehensive Coordination Chemistry Ⅱ, Elsevier Ltd, Boston, 2003.
      (b) Tang, W.; Zhang, X. Chem. Rev. 2003, 103, 3029.
      (c) Bö rner, A. Phosphorus Ligands in Asymmetric Catalysis, Wiley-VCH, Weinheim, Germany, 2008.
      (d) Zhou, Q.-L. Privileged Chiral Ligands and Catalysts, Wiley- VCH, Weinheim, Germany, 2011.
      (e) Zhang, C.; Lu, X. J. Org. Chem. 1995, 60, 2906.

    27. [27]

      Nair, V.; Biju, A. T.; Mohanan, K.; Suresh, E. Org. Lett. 2006, 8, 2213.  doi: 10.1021/ol0604623

    28. [28]

      Chakravarty, M.; Kumar, N. N. B; Sajna, K. V.; Swamy, K. C. K. Eur. J. Org. Chem. 2008, 4500.
       

    29. [29]

      Lü, R.; Cheng, X.; Zheng, X.; Ma, S. Chem. Commun. 2014, 50, 1537.  doi: 10.1039/c3cc48215d

    30. [30]

      (a) Kazmo, Y.; Akira, M.; Norihiko, M.; Toshiio, M.; Kazutaka, A. Shigera, I. Pestic. Sci. 1999, 55, 161.
      (b) Gursoy, A.; Demirayak, M. S.; Ç apan, G.; Erol, K.; Vural, K. Eur. J. Med. Chem. 2000, 35, 359.
      (c) Badawey, E. A. M.; El-Ashmawey, I. M. Eur. J. Med. Chem. 1998, 33, 349.

    31. [31]

      Yamazaki, S.; Maenaka, Y.; Fujinami, K.; Mikata, Y. RSC Adv. 2012, 2, 8095.  doi: 10.1039/c2ra21249h

    32. [32]

      Yang, C.; Li J.; Zhou, R.; Chen, X.; Gao, Y.; He, Z. Org. Biomol. Chem. 2015, 13, 4869.  doi: 10.1039/C5OB00258C

    33. [33]

      Yang, C.; Chen, X.; Tang, T.; He, Z. Org. Lett. 2016, 18, 1486.  doi: 10.1021/acs.orglett.6b00456

    34. [34]

      Li, Y.; Zhang, H.; Wei, R.; Miao, Z. Adv. Synth. Catal. 2017, 359, 4158.  doi: 10.1002/adsc.201701013

    35. [35]

      Lian, Z.; Guan, X.-Y.; Shi, M. Tetrahedron 2011, 67, 2018.  doi: 10.1016/j.tet.2011.01.072

    36. [36]

      Sankar, M. G.; Garcia-Castro, M.; Wang, Y.; Kumar, K. Asian J. Org. Chem. 2013, 2, 646.  doi: 10.1002/ajoc.201300120

    37. [37]

      Alizadeh, A. Helv. Chim. Acta 2005, 88, 2777.  doi: 10.1002/hlca.200590218

    38. [38]

      Cui, S.-L.; Wang, J.; Wang, Y.-G. Org. Lett. 2008, 10, 13.  doi: 10.1021/ol7022888

    39. [39]

      Sun, Y.; Jiang, Z.; Hong, D.; Lu, P.; Wang, Y.; Lin, X. Tetrahedron 2010, 66, 2427.  doi: 10.1016/j.tet.2010.01.087

    40. [40]

      Zhang, W.; Zhu, Y.; Wei, D.; Tang, M. J. Comput. Chem. 2012, 33, 715.  doi: 10.1002/jcc.22906

    41. [41]

      Saha, J.; Lorenc, C.; Surana, B.; Peczuh, M. W. J. Org. Chem. 2012, 77, 3846.  doi: 10.1021/jo3001854

    42. [42]

      Yang, C.; Liu, W.; He, Z.; He, Z. Org. Lett. 2016, 18, 4936.  doi: 10.1021/acs.orglett.6b02415

  • 加载中
    1. [1]

      Zihao Guo Shichen Ma Kin Shing Chan . 烯烃环化反应中6电子试剂的等瓣相似性和等电子关系. University Chemistry, 2025, 40(6): 160-166. doi: 10.12461/PKU.DXHX202408038

    2. [2]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    3. [3]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    4. [4]

      Aiyi Xin Jiawei Li Xinyang Ran Chuanjiang Fu Zhiguo Wang . Collaborative Science and Education Based Experimental Design in Organic Chemistry: A Case Study of the Nucleophilic Substitution Reaction of 2-Hydroxymethyl-4,6-Di-Tert-Butylphenol. University Chemistry, 2025, 40(5): 366-375. doi: 10.12461/PKU.DXHX202407031

    5. [5]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    6. [6]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    7. [7]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    8. [8]

      Caixia Lin Ting Liu Zhaojiang Shi Hong Yan Keyin Ye Yaofeng Yuan . Innovative Experiment of Electrochemical Dearomative Spirocyclization of N-Acyl Sulfonamides. University Chemistry, 2025, 40(4): 359-366. doi: 10.12461/PKU.DXHX202406107

    9. [9]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    10. [10]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    11. [11]

      Xinghai Liu Hongke Wu . Exploration and Practice of Ideological and Political Education in Heterocyclic Chemistry Based on "Fentanyl" Event. University Chemistry, 2024, 39(8): 359-364. doi: 10.3866/PKU.DXHX202312100

    12. [12]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    13. [13]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    14. [14]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    15. [15]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    16. [16]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    17. [17]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    18. [18]

      Ying Xiong Guangao Yu Lin Wu Qingwen Liu Houjin Li Shuanglian Cai Zhanxiang Liu Xingwen Sun Yuan Zheng Jie Han Xin Du Chengshan Yuan Qihan Zhang Jianrong Zhang Shuyong Zhang . Basic Operations and Specification Suggestions for Determination of Physical Constants of Organic Compounds. University Chemistry, 2025, 40(5): 106-121. doi: 10.12461/PKU.DXHX202503079

    19. [19]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    20. [20]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

Metrics
  • PDF Downloads(30)
  • Abstract views(1655)
  • HTML views(281)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return