Citation: Zhu Zhiqiang, Xiao Lijin, Xie Zongbo, Le Zhanggao. Recent Advances in the α-C(sp3)-H Bond Functionalization of Glycine Derivatives[J]. Chinese Journal of Organic Chemistry, ;2019, 39(9): 2345-2364. doi: 10.6023/cjoc201903006 shu

Recent Advances in the α-C(sp3)-H Bond Functionalization of Glycine Derivatives

  • Corresponding author: Zhu Zhiqiang, zhuzq@ecit.cn Xie Zongbo, zbxie@ecit.cn Le Zhanggao, zhgle@ecit.cn
  • Received Date: 3 March 2019
    Revised Date: 15 April 2019
    Available Online: 26 September 2019

    Fund Project: the Foundation of Jiangxi Educational Committee GJJ170458the China Postdoctoral Science Foundation 2018M632595the National Natural Science Foundation of China 21602027the National Natural Science Foundation of China (Nos. 21602027, 11765002), the Foundation of Jiangxi Educational Committee (No. GJJ170458) and the China Postdoctoral Science Foundation (No. 2018M632595)the National Natural Science Foundation of China 11765002

Figures(52)

  • α-Amino acids are the units of proteins, which not only widely occur in many biological important compounds and natural products, but also are useful as organic catalysts or ligands for asymmetric synthesis. Among them, glycines are particularly useful building blocks in organic synthesis. Direct C(sp3)-H bond functionalization of glycine derivatives provided an attractive synthesis strategy for the construction of a variety of α-substituted α-amino acids. The recent progress in the α-C(sp3)-H bond activation of glycine derivatives, with various reagents to form carbon-carbon and carbon-heteroatom bond, and oxidative coupling/cyclization reaction involving glycine derivatives is reviewed.
  • 加载中
    1. [1]

      (a) Pollegioni, L.; Servi, S. Non-natural Amino Acids: Methods and Protocols, Springer, New York, 2012.
      (b) Hughes, A. B. Amino Acids, Peptides and Proteins in Organic Chemistry, Wiley VCH, Weinheim, 2011.

    2. [2]

    3. [3]

      (a) Albericio, F.; Kruger, H. G. Future Med. Chem. 2012, 4, 1527.
      (b) Craik, D. J.; Fairlie, D. P.; Liras, S.; Price, D. Chem. Biol. Drug Des. 2013, 81, 136.
      (c) Kaspar, A. A.; Reichert, J. M. Drug Discovery Today 2013, 18, 807.

    4. [4]

      (a) Noisier, A. F. M.; Brimble, M. A. Chem. Rev. 2014, 114, 8775.
      (b) Metz, A. M.; Kozlowski, M. C. J. Org. Chem. 2015, 80, 1.

    5. [5]

      (a) Bauer, M.; Wang, W.; Lorion, M. M.; Dong, C.; Ackermann, L. Angew. Chem., Int. Ed. 2018, 57, 203.
      (b) Stepan, A. F.; White, M. C. Nature 2016, 537, 214.
      (c) Uhlig, T.; Kyprianou, T.; Martinelli, F. G.; Oppici, C. A.; Heiligers, D.; Heiligers, D.; Hills, X. R.; Calvo, P. V. Eup. Open Proteomics 2014, 4, 58.
      (d) Xiao, H.; Chatterjee, A.; Choi, S. H.; Bajjuri, K. M.; Sinha, S. C.; Schultz, P. G. Angew. Chem., Int. Ed. 2013, 52, 14080.

    6. [6]

      (a) Strecker, A. Ann. Chem. Pharm. 1850, 75, 27.
      (b) Ugi, I. Angew. Chem., Int. Ed. 1962, 1, 8.
      (c) Petasis, N. A.; Zavialov, A. I. J. Am. Chem. Soc. 1997, 119, 445.

    7. [7]

      (a) Bayer, A.; Kazmaier, U. J. Org. Chem. 2014, 79, 8491.
      (b) Maruoka, K.; Ooi, T. Chem. Rev. 2003, 103, 3013.

    8. [8]

      (a) Brown, Jihn. M.; Cooley, Nei. A. Chem. Rev. 1988, 88, 1031.
      (b) Godula, K.; Sames, D. Science 2006, 312, 67.
      (c) Bergman, R. G. Nature 2007, 446, 391.

    9. [9]

    10. [10]

    11. [11]

      (a) Li, Z.; Li, C. J. J. Am. Chem. Soc. 2005, 127, 3672.
      (b) Li, C. J. Acc. Chem. Res. 2009, 42, 335.

    12. [12]

      (a) Zhu, Z. Q.; Bai, P.; Huang, Z. Z. Org. Lett. 2014, 16, 4881.
      (b) Salman, M.; Zhu, Z. Q.; Huang, Z. Z. Org. Lett. 2016, 18, 1526.
      (c) Zhu, Z. Q.; Xie, Z. B.; Le, Z. G. J. Org. Chem. 2016, 81, 9449.
      (d) Zhu, Z. Q.; Xie, Z. B.; Le, Z. G. Synlett. 2017, 28, 485.
      (e) Zhu, Z. Q.; Xiao L. J.; Chen, Y.; Zhu, H. B.; Xie, Z. B.; Le, Z. G. Synthesis 2018, 50, 2775.
      (f) Xiao L. J.; Zhu, Z. Q.; Guo, D.; Xie, Z. B.; Lu, Y.; Le, Z. G. Synlett 2018, 29, 1659.
      (g) Zhu, Z. Q.; Xiao L. J.; Zhou, C. C.; Song, H. L.; Xie, Z. B.; Le, Z. G. Tetrahedron Lett. 2018, 59, 3326.
      (h) Zhu, Z. Q.; Xiao L. J.; Guo, D.; Chen, X.; Ji, J. J.; Zhu, X.; Xie, Z. B.; Le, Z. G. J. Org. Chem. 2019, 84, 435.

    13. [13]

      (a) Barton, D. H. R.; Beaton, J. M.; Geller, L. E.; Pechet, M. M. J. Am. Chem. Soc. 1960, 82, 2640.
      (b) Bras, J. L.; Muzart, J. Chem. Rev. 2011, 111, 1170.
      (c) Prier, C. K.; Rankic, D. A.; Mac Millan, D. W. C. Chem. Rev. 2013, 113, 5322.

    14. [14]

      Luo, Y. R. Handbook of Bond Dissociation Energy in Organic Compound, CRC Press, Boca Raton, 2002.

    15. [15]

      (a) Li, Z.; Bohle, D. S.; Li, C. J. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 8928.
      (b) Li, Z.; Li, C. J. J. Am. Chem. Soc. 2006, 128, 56.

    16. [16]

      Zhao, L.; Li, C. J. Angew. Chem., Int. Ed. 2008, 47, 7075.  doi: 10.1002/anie.200801367

    17. [17]

      Luo, M. H.; Jiang, Y. Y.; Xu, K.; Liu, Y. G.; Sun, B. G.; Zeng, C. C. Beilstein J. Org. Chem. 2018, 14, 499.  doi: 10.3762/bjoc.14.35

    18. [18]

      Sud, A.; Sureshkumar, D.; Klussmann, M. Chem. Commun. 2009, 3169.
       

    19. [19]

      Xie, J.; Huang, Z. Z. Angew. Chem., Int. Ed. 2010, 49, 10181.  doi: 10.1002/anie.201004940

    20. [20]

      Liu, P.; Wang, Z.; Lin, J.; Hu, X. Eur. J. Org. Chem. 2012, 2012, 1583.  doi: 10.1002/ejoc.201101656

    21. [21]

      Gao, X. W.; Meng, Q. Y.; Xiang, M.; Chen, B.; Feng, K.; Tung, C. H.; Wu, L. Z. Adv. Synth. Catal. 2013, 355, 2158.  doi: 10.1002/adsc.201300311

    22. [22]

      Zhang, G.; Zhang, Y.; Wang, R. Angew. Chem., Int. Ed. 2011, 50, 10429.  doi: 10.1002/anie.201105123

    23. [23]

      Tan, Y. Q.; Yuan, W.; Gong, L.; Meggers, E. Angew. Chem., Int. Ed. 2015, 127, 13237.  doi: 10.1002/ange.201506273

    24. [24]

      (a) Deng, G. J.; Zhao, L.; Li, C. J. Angew. Chem., Int. Ed. 2008, 47, 6278.
      (b) Ochiai, M.; Miyamato, K.; Kaneaki, T.; Hayashi, S.; Nakanishi, W. Science 2011, 332, 448.
      (c) Tran, B.; Li, B.; Driess, M.; Hartwig, J. F. J. Am. Chem. Soc. 2014, 136, 2555.

    25. [25]

      Forkin, A. A.; Schreiner, P. R. Chem. Rev. 2002, 102, 1551.  doi: 10.1021/cr000453m

    26. [26]

      Wei, W. T.; Song, R. J.; Li, J. H. Adv. Synth. Catal. 2014, 356, 1703.  doi: 10.1002/adsc.201301091

    27. [27]

      Peng, H.; Yu, J. T.; Jiang, Y.; Yang, H.; Cheng, J. J. Org. Chem. 2014, 79, 9847.  doi: 10.1021/jo5017426

    28. [28]

      San Segundo, M.; Guerrero, I.; Correa, A. Org. Lett. 2017, 19, 5288.  doi: 10.1021/acs.orglett.7b02567

    29. [29]

      Mutra, M. R.; Dhandabani, G. K.; Wang, J. J. Adv. Synth. Catal. 2018, 360, 3960.  doi: 10.1002/adsc.201800783

    30. [30]

      Segundo, M. S.; Correa, A. ChemSusChem. 2018, 11, 3893.  doi: 10.1002/cssc.201802216

    31. [31]

      Li, K.; Tan, G.; Huang, J.; Song, F.; You, J. Angew. Chem., Int. Ed. 2013, 52, 12942.  doi: 10.1002/anie.201306181

    32. [32]

      Li, K.; Wu, Q.; Lan, J.; You, J. S. Nat. Chem. 2015, 6, 8404.

    33. [33]

      Tan, M.; Li, K.; Yin, J.; You, J. Chem. Commun. 2018, 54, 1221.  doi: 10.1039/C7CC08512E

    34. [34]

      (a) Inagaki, A.; Akita, M. Coord. Chem. Rev. 2010, 254, 1220.
      (b) Narayanam, J. M.; Stephenson, C. R. Chem. Soc. Rev. 2011, 40, 102.
      (c) Shi, L.; Xia, W. Chem. Soc. Rev. 2012, 41, 7687.
      (d) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.

    35. [35]

      (a) McNally, A.; Prier, C. K.; MacMillan, D. W. C. Science 2011, 334, 1114.
      (b) Petronijevic, F. R.; Nappi, M.; MacMillan, D. W. C. J. Am. Chem. Soc. 2013, 135, 18323.
      (c) Pirnot, M. T.; Rankic, D. A.; Martin, D. B.; MacMillan, D. W. C. Science 2013, 339, 1593.

    36. [36]

      Xuan, J.; Zeng, T. T.; Feng, Z. J.; Deng, Q. H.; Chen, J. R.; Lu, L. Q.; Xiao, W. J.; Alper H. Angew. Chem., Int. Ed. 2015, 54, 1625.  doi: 10.1002/anie.201409999

    37. [37]

      Ding, W.; Lu, L. Q.; Liu, J.; Liu, D.; Song, H. T.; Xiao W. J. J. Org. Chem. 2016, 81, 7237.  doi: 10.1021/acs.joc.6b01217

    38. [38]

      Wang, C.; Guo, M. Z.; Qi, R. P.; Shang, Q. Y.; Liu, Q. Y.; Wang, S.; Zhao, L.; Wang, R.; Xu, Z. Q. Angew. Chem., Int. Ed. 2018, 130, 16067.  doi: 10.1002/ange.201809400

    39. [39]

      (a) Li, Z.; Li, C. J. J. Am. Chem. Soc. 2005, 127, 3672.
      (b) Li, Z.; Li, C. J. J. Am. Chem. Soc. 2005, 127, 6968.
      (c) Li, Z.; Li, C. J. J. Am. Chem. Soc. 2004, 126, 11810.

    40. [40]

      Xie, Z.; Liu, X.; Liu, L. Org. Lett. 2016, 18, 2982.  doi: 10.1021/acs.orglett.6b01328

    41. [41]

      (a) Muller, J.; Saunders, J. O. F.; Salituro, G.; Travins, J. M.; Yan, S.; Zhao, F.; Su, S. M. ACS Med. Chem. Lett. 2012, 3, 850.
      (b) Zhang, L.; Wang, X.; Li, X.; Xu, W. J. Enzyme. Inhib. Med. Chem. 2014, 29, 333.
      (c) Weigel, L. F.; Nitsche, C.; Graf, D.; Bartenschlager, R.; Klein, C. D. J. Med. Chem. 2015, 58, 7719.

    42. [42]

      (a) Denis, J. N.; Correa, A.; Greene, A. E. J. Org. Chem. 1991, 56, 6939.
      (b) Buyck, T.; Wang, Q.; Zhu, J. Angew. Chem., Int. Ed. 2013, 52, 12714.

    43. [43]

      (a) Shirakawa, S.; Maruoka, K. Angew. Chem., Int. Ed. 2013, 52, 4312.
      (b) Hashimoto, T.; Maruoka, K. Chem. Rev. 2007, 107, 5656.

    44. [44]

      Zhao, L.; Baslé, O.; Li, C. J. Proc. Natl. Acd. Sci. U. S. A. 2009, 106, 4106.  doi: 10.1073/pnas.0809052106

    45. [45]

      Zhu, S. Q.; Rueping, M. Chem. Commun. 2012, 48, 11960.  doi: 10.1039/c2cc36995h

    46. [46]

      Wang, Z. Q.; Hu, M.; Huang, X. C.; Gong, L. B.; Xie, Y. X.; Li, J. H. J. Org. Chem. 2012, 77, 8705.  doi: 10.1021/jo301691h

    47. [47]

      Huo, C.; Wang, C.; Wu, M.; Jia, X.; Xie, H.; Yuan, Y. Adv. Synth. Catal. 2014, 356, 411.  doi: 10.1002/adsc.201300535

    48. [48]

      Huo, C.; Yuan, Y.; Wu, M.; Jia, X.; Wang, X.; Chen, F.; Tang, J. Angew. Chem. 2014, 53, 13544.  doi: 10.1002/anie.201406905

    49. [49]

      Gao, X. W.; Meng, Q. Y.; Li, J. X.; Zhong, J. J.; Lei, T.; Li, X. B.; Tung, C. H.; Wu, L. Z. ACS Catal. 2015, 5, 2391.  doi: 10.1021/acscatal.5b00093

    50. [50]

      Zhang, Y.; Ni, M. J.; Feng, B. N. Org. Biomol. Chem. 2016, 14, 1550.  doi: 10.1039/C5OB02325D

    51. [51]

      Wu, J. C.; Song, R. J.; Wang, Z. Q.; Huang, X. C.; Xie, Y. X.; Li, J. H. Angew. Chem., Int. Ed. 2012, 51, 3453.  doi: 10.1002/anie.201109027

    52. [52]

      Huo, C.; Wang, C.; Sun, C.; Jia, X.; Wang, X.; Chang, W.; Wu, M. Adv. Synth. Catal. 2013, 355, 1911.  doi: 10.1002/adsc.201300276

    53. [53]

      Li, S. L.; Yang, X. R.; Wang, Y. W.; Zhou, H.; Zhang, B. Y.; Huang, G. X.; Zhang, Y.; Li Y. Adv. Synth. Catal. 2018, 360, 4452.  doi: 10.1002/adsc.201801018

    54. [54]

      Zhou, J. L.; Liu, J. C.; Chen, Q. Y. Chin. J. Org. Chem. 2009, 29, 1708 (in Chinese).
       

    55. [55]

      Jin, C. A.; Xu, Q.; Feng, G. F.; Jin, Y.; Zhang, L. Y. Chin. J. Org. Chem. 2018, 38, 775 (in Chinese).
       

    56. [56]

      Jiao, J.; Zhang, J. R.; Liao, Y. Y.; Xu, L.; Hu, M.; Tang, R. Y. RSC Adv. 2017, 7, 30152.  doi: 10.1039/C7RA05303G

    57. [57]

      Ramana, D. V.; Chowhan, L. R.; Chandrasekharam, M. ChemistrySelect 2017, 2, 2241.  doi: 10.1002/slct.201700330

    58. [58]

      Wei, Y. Y.; Wang, J.; Wang, Y. J.; Yao, X. Q.; Yang, C. X.; Huo, C. Org. Biomol. Chem. 2018, 16, 4985.  doi: 10.1039/C8OB01068D

    59. [59]

      Gao, Y. Z.; Tang, G.; Zhao, Y. F. Chin. J. Org. Chem. 2018, 38, 62 (in Chinese).
       

    60. [60]

      Baslé, O.; Li, C. J. Chem. Commun. 2009, 4124.
       

    61. [61]

      Yang, B.; Yang, T. T.; Li, X. A.; Wang, J. J.; Yang, S. D. Org. Lett. 2013, 15, 5024.  doi: 10.1021/ol402355a

    62. [62]

      Zhi, H.; Ung, S. P. M.; Liu, Y.; Zhao, L.; Li, C. J. Adv. Synth. Catal. 2016, 358, 2553.  doi: 10.1002/adsc.201600539

    63. [63]

      Jia, X.; Liu, X.; Shao, Y.; Yuan, Y.; Zhu, Y.; Hou, W.; Zhang, X. Adv. Synth. Catal. 2017, 359, 4399.  doi: 10.1002/adsc.201700850

    64. [64]

      Liu, X. X.; Wu, Z. Y.; He, Y. Q.; Zhou, X. Q.; Hu, T.; Ma, C. W.; Huang, G. S. Adv. Synth. Catal. 2016, 358, 2385.  doi: 10.1002/adsc.201600132

    65. [65]

      Chen, C.; Zhu, M. H.; Jiang, L. H.; Zeng, Z. B.; Yi, N. N.; Xiang, J. N. Org. Biomol. Chem. 2017, 15, 8134.  doi: 10.1039/C7OB02012K

    66. [66]

      Daggupati, R.; Malapak, C. Org. Chem. Front. 2018, 5, 788.  doi: 10.1039/C7QO00851A

    67. [67]

      Liu, X.; Pu, J.; Luo, X.; Cui, X.; Wu, Z.; Huang, G. Org. Chem. Front. 2018, 5, 361.  doi: 10.1039/C7QO00830A

    68. [68]

      (a) Povarov, L. S.; Mikhailov, B. M. Izv. Akad. Nauk SSSR, Otd. Khim. Nauk 1963, 953.
      (b) Povarov, L. S.; Grigos, V. I.; Mikhailov, B. M. Izv. Akad. Nauk SSSR, Otd. Khim. Nauk 1963, 2039.

    69. [69]

      Richter, H.; García Manche o, O. Org. Lett. 2011, 13, 6066.  doi: 10.1021/ol202552y

    70. [70]

      Liu, P.; Wang, Z.; Lin, J.; Hu, X. Eur. J. Org. Chem. 2012, 1583.
       

    71. [71]

      Rohlmann, R.; Stopka, T.; Richter, H.; Manche o, O. J. Org. Chem. 2013, 78, 6050.  doi: 10.1021/jo4007199

    72. [72]

      Jia, X.; Peng, F.; Qing, C.; Huo, C.; Wang, X. Org. Lett. 2012, 14, 4030.  doi: 10.1021/ol301909g

    73. [73]

      Jia, X.; Huo, W.; Shao, Y.; Yuan, Y.; Chen, Q.; Li, P.; Liu, X.; Ji, H. Chem.-Eur. J. 2017, 23, 12980.  doi: 10.1002/chem.201702497

    74. [74]

      Jia, X. D.; Wang, Y.; Peng, F.; Huo, C.; Yu, L.; Liu, J.; Wang, X. Adv. Synth. Catal. 2014, 356, 1210.  doi: 10.1002/adsc.201300810

    75. [75]

      (a) Bolm, C.; Legros, J.; Le Paih, J. L.; Zani, L. Chem. Rev. 2004, 104, 6217.
      (b) Bauer, I.; Knölker, H. J. Chem. Rev. 2015, 115, 3170.

    76. [76]

      Li, Z.; Cao, L.; Li, C. J. Angew. Chem., Int. Ed. 2007, 46, 6505.  doi: 10.1002/anie.200701782

    77. [77]

      Huo, C.; Chen, F.; Yuan, Y.; Xie, H.; Wang, Y. Org. Lett. 2015, 17, 5028.  doi: 10.1021/acs.orglett.5b02504

    78. [78]

      Huo, C.; Yuan, Y.; Chen, F.; Wang, Y. Adv. Synth. Catal. 2015, 357, 3648.  doi: 10.1002/adsc.201500513

    79. [79]

      Huo, C.; Xie, H.; Chen, F.; Tang, J.; Wang, Y. Adv. Synth. Catal. 2016, 358, 724.  doi: 10.1002/adsc.201500893

    80. [80]

      Wei, W. T.; Li, H. B.; Song, R. J.; Li, J. H. Chem. Commun. 2015, 51, 11325.  doi: 10.1039/C5CC03468J

    81. [81]

      (a) Jia, X.; Wang, Y.; Peng, F.; Huo, C.; Yu, L.; Liu, J.; Wang, X. J. Org. Chem. 2013, 78, 9450.
      (b) Wang, Y.; Peng, F.; Liu, J.; Huo, C.; Wang, X.; Jia, X. J. Org. Chem. 2015, 80, 609.
      (c) Liu, J.; Wang, Y.; Yu, L.; Huo, C.; Wang, X.; Jia, X. Adv. Synth. Catal. 2014, 356, 3214.
      (d) Liu, G.; Quian, J.; Hua, J.; Cai, F.; Li, X.; Liu, L. Org. Biomol. Chem. 2016, 14, 1147.
      (e) Xie, Z.; Jia, J.; Liu, X.; Liu, L. Adv. Synth. Catal. 2016, 358, 919.
      (e) Ni, M.; Zhang, Y.; Gong, T.; Feng, B. Adv. Synth. Catal. 2017, 359, 824.
      (f) Yang, X.; Li, L.; Li, Y.; Zhang, Y. J. Org. Chem. 2016, 81, 12433.
      (g) Liu, X.; Shao, Y.; Li, P.; Ji, H.; Yuan, Y.; Jia, X. Tetrahedron Lett. 2018, 59, 637.
      (h) Meng, Q. Y.; Gao, X. W.; Lei, T.; Liu, Z.; Zhan, F.; Li, Z. J.; Zhong, J. J.; Xiao, H.; Feng, K.; Chen, B.; Tao, Y.; Tung, C. H.; Wu, L. Z. Sci. Adv. 2017, 3, e1700666.

    82. [82]

      Deng, Q. H.; Zou, Y. Q.; Lu, L. Q.; Tang, Z. L.; Chen, J. R.; Xiao, W. J. Chem.-Asian J. 2014, 9, 2432.  doi: 10.1002/asia.201402443

    83. [83]

      Li, Y. J.; Li, X.; Zhang, S. X.; Zhao, Y. L.; Liu, Q. Chem. Commun. 2015, 51, 11565.
       

    84. [84]

      Huo, C.; Yuan, Y.; Chen, F.; Tang, J.; Wang, Y. Org. Lett. 2015, 17, 4208.  doi: 10.1021/acs.orglett.5b01985

    85. [85]

      Xie, J.; Huang, Y.; Song, H.; Liu, Y.; Wang, Q. Org. Lett. 2017, 19, 6056.  doi: 10.1021/acs.orglett.7b02767

    86. [86]

      Li, H.; Huang, S.; Wang, Y.; Huo, C. Org. Lett. 2018, 20, 92.  doi: 10.1021/acs.orglett.7b03448

    87. [87]

      Tang, L.; Li, X. M.; Matuska, J. H.; He, Y. H.; Guan, Z. Org. Lett. 2018, 20, 5618.  doi: 10.1021/acs.orglett.8b02303

  • 加载中
    1. [1]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    2. [2]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    3. [3]

      Meiyu Lin Yuxin Fang Songzhang Shen Yaqian Duan Wenyi Liang Chi Zhang Juan Su . Exploration and Implementation of a Dual-Pathway Blended Teaching Model in General Chemistry Experiment Course: A Case Study of Copper Glycine Synthesis and Its Thermal Analysis. University Chemistry, 2024, 39(8): 48-53. doi: 10.3866/PKU.DXHX202312042

    4. [4]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    5. [5]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    6. [6]

      Feiyang Liu Liuhong Song Miaoyu Fu Zhi Zheng Gang Xie Junlong Zhao . Tryptophan’s Employment Journey. University Chemistry, 2024, 39(9): 16-21. doi: 10.12461/PKU.DXHX202404037

    7. [7]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    8. [8]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    9. [9]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    10. [10]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    11. [11]

      Caixia Lin Ting Liu Zhaojiang Shi Hong Yan Keyin Ye Yaofeng Yuan . Innovative Experiment of Electrochemical Dearomative Spirocyclization of N-Acyl Sulfonamides. University Chemistry, 2025, 40(4): 359-366. doi: 10.12461/PKU.DXHX202406107

    12. [12]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    13. [13]

      Lei Shu Zimin Duan Yushen Kang Zijian Zhao Hong Wang Lihua Zhu Hui Xiong Nan Wang . An Exploration of the CO2-Involved Carbon Cycle World. University Chemistry, 2024, 39(5): 144-153. doi: 10.3866/PKU.DXHX202309084

    14. [14]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    15. [15]

      Xinghai Liu Hongke Wu . Exploration and Practice of Ideological and Political Education in Heterocyclic Chemistry Based on "Fentanyl" Event. University Chemistry, 2024, 39(8): 359-364. doi: 10.3866/PKU.DXHX202312100

    16. [16]

      Lei Shu Zhengqing Hao Kai Yan Hong Wang Lihua Zhu Fang Chen Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134

    17. [17]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    18. [18]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    19. [19]

      Qun Wang Yang Li Songtao Lu Hongjun Kang Yang Hong Xiaohong Wu . Exploration for the Chemistry Innovative Talent Cultivation from an Interdisciplinary Perspective. University Chemistry, 2024, 39(8): 132-135. doi: 10.3866/PKU.DXHX202401052

    20. [20]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

Metrics
  • PDF Downloads(23)
  • Abstract views(2105)
  • HTML views(419)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return