Citation: Liu Lice, Wu Jieqing, Ma Hongfei, Zhang Han, Gu Jiefan, Li Yufeng. Nickel Chloride-Catalyzed Oxidation of Aromatic Hydrocarbon with Sodium Persulfate at the Benzylic Site[J]. Chinese Journal of Organic Chemistry, ;2019, 39(6): 1688-1694. doi: 10.6023/cjoc201903003 shu

Nickel Chloride-Catalyzed Oxidation of Aromatic Hydrocarbon with Sodium Persulfate at the Benzylic Site

  • Corresponding author: Li Yufeng, yufengli@njtech.edu.cn
  • Received Date: 2 March 2019
    Revised Date: 18 April 2019
    Available Online: 26 June 2019

Figures(2)

  • A practical method for the oxidation of aromatic side chains was established for the preparation of aromatic aldehydes and ketones. Using NiCl2 as the catalyst, substituted toluenes were oxidized with Na2S2O8 at the benzylic site for the synthesis of the corresponding aldehydes in the yield of 22%~79%. Ethylbenzene analogs were oxidized more easily to obtain the corresponding ketones with 64%~84% yields. The oxidation of benzyl alcohol analogs was completed to acquire the corresponding carbonyl compounds in shorter time with better selectivity and yields. The method has the advantages such as the mild reaction conditions, no requirement for precious metals or additional promoter, and good selectivity.
  • 加载中
    1. [1]

      (a) Sheldon, R. A.; Kochi, J. K. Metal Catalyzed Oxidations of Organic Compounds, Academic Press, New York, 1981.
      (b) Trost, B. M.; Fleming, I. Comprehensive Organic Synthesis (Oxidation), Pergamon, New York, 1991, Vol. 7.
      (c) Zhang, J. T.; Wang, Z. T.; Wang, L.; Wan, C. F.; Zheng, X. Q.; Wang, Z. Y. Green. Chem. 2009, 11, 1973.

    2. [2]

      Rao, K. T. V.; Rao, P. S. N.; Nagaraju, P.; Prasad, P. S. S.; Lingaiah, N. J. Mol. 2009, 303, 84.  doi: 10.1016/j.molcata.2009.01.006

    3. [3]

      (a) Anastas, P.; Eghbali, N. Chem. Soc. Rev. 2010, 39, 301.
      (b) Yiu, S. M.; Wu, Z. B.; Mak, C. K.; Lau, T. C. J. Am. Chem. Soc. 2004, 126, 14921.
      (c) Hudlicky, M. Oxidations in Organic Chemistry, American Chemical Society, Washington, DC, 1990.

    4. [4]

    5. [5]

      (a) Ohkubo, K.; Fukuzumi, S. Org. Lett. 2000, 2, 3647.
      (b) Kei, O.; Kyou, S.; Kohei, M.; Shunichi, F. J. Am. Chem. Soc. 2003, 125, 12850.
      (c) Pahari, S. K.; Pal, P.; Srivastava, D. N.; Ghosh, S. C.; Panda, A. B. Chem. Commun. 2015, 51, 10322.
      (d) Li, S. L.; Zhu, B.; Lee, R.; Qiao, B. K.; Jiang, Z. Y. Org. Chem. Front. 2018, 5, 380.

    6. [6]

      (a) Jr, L. Q.; Tolman, W. B. Nature 2008, 455. 333.
      (b) Rickert, A.; Krombach, V.; Hamers, O.; Zorn, H.; Maison, W. G. Green Chem. 2012, 14, 639.
      (c) Roiban, G. D.; Agudo, R.; Reetz, M. T. Angew. Chem., Int. Ed. 2014, 53, 8659.
      (d) Nastri, F.; Chino, M.; Maglio, O.; Damodaran, A. B.; Lu, Y.; Lombardi, A. Chem. Soc. Rev. 2016, 45, 5020.

    7. [7]

      (a) Nam, W. Acc. Chem. Res. 2007, 40, 522.
      (b) Ding, Z. D.; Zhu, W.; Li, T.; Shen, R.; Li, Y. X.; Li, Z. J.; Ren, X. H.; Gu, Z. G. Dalton Trans. 2017, 46, 11372.

    8. [8]

      (a) Qi, J. Y.; Ma, H. X.; Li, X. J.; Zhou, Z. Y.; Choi, M. C. K.; Chan, A. S. C.; Yang, Q. Y. Chem. Commun. 2003, 1294.
      (b) Wang, B.; Mao, W.; Ma, H. Z. Ind. Eng. Chem. Res. 2009, 48, 440.
      (c) Potapenko, E. V.; Andreev, P. Y. Russ. J. Appl. Chem. 2011, 84, 984.

    9. [9]

      (a) Lane, B.-S.; Burgess, K. Chem. Rev. 2003, 103, 2457.
      (b) Wang, Y.; Li, H. R.; Yao, J.; Wang, X. C.; Antoniettia, M. Chem. Sci. 2011, 2, 446.
      (c) Shen, D. Y.; Miao, C. X.; Wang, S. F.; Xia, C. G.; Sun, W. Org. Lett. 2014, 16, 1108.
      (d) Verma, S.; Baig, R. B. N.; Nadagouda, M. N.; Varma, R. S. ACS Sustainable Chem. Eng. 2016, 4, 2333.
      (e) Saisaha, P.; Dong, J. J.; Meinds, T. G.; Johannes, W.; Hage, R.; Mecozzi, F.; Kasper, J. B.; Browne, W. R. ACS Catal. 2016, 6, 3486.
      (f) Konstantin, P.; Bryliakov Chem. Rev. 2017, 117, 11406.

    10. [10]

      (a) Halina, W.; Soroko, G.; Jacek, M. Synth. Commun. 2008, 38, 2000.
      (b) Hossain, M. M.; Shyu, S. G. Tetrahedron 2016, 72, 4252.
      (c) Xu, W. X.; Zhang, Z. Q.; Zhao, X.; Li, J. Coord. Chem. 2017, 70, 746.
      (d) Chen, Y.; Jie, S. S.; Yang, C. Q.; Liu, Z. G. Appl. Surf. Sci. 2017, 419, 98.
      (e) Sun, Q.; Song, X. Y.; Gao, L.; Chen, W.; Li, Y.; Mao, L.; Yang, J. H. Chem. Pap. 2018, 72, 2203.

    11. [11]

      (a) Badri, R.; Adlu, M.; Mohammadi, M. K. Arabian J. Chem. 2015, 8, 62.
      (b) Hu, Y. X.; Zhou, L. H.; Lu, W. J. Synthesis 2017, 49, 4007.
      (c) Han, W.; Zhao, H. Y. CN 107216242, 2017[Chem. Abstr. 2017, 167, 528688].

    12. [12]

      Jakob, H.; Leininger, S.; Lehmann, T.; Jacobi, S.; Gutewort, S. Ullmann's Encyclopedia of Industrial Chemistry, Weinheim, W. C. Germany, 2012, Vol. 26, p. 308.

    13. [13]

      Li, Y. F.; Zhang, H.; Dai, C. W.; Liu, L. C.; Ma, H. F.; Pu, H. Z. Tetrahedron 2018, 74, 3712.  doi: 10.1016/j.tet.2018.05.045

    14. [14]

      Lin, X.; Nie, Z. Z.; Zhang, L. Y.; Mei, S. C.; Chen, Y. Green Chem. 2017, 19, 2164.  doi: 10.1039/C7GC00469A

    15. [15]

      Zhang, B. S.; Zhu, R. L.; Liu, Z. G.; Xin, L.; Zhang, J. S. Org. Chem. Front. 2016, 3, 1326.  doi: 10.1039/C6QO00237D

    16. [16]

      Guo, T. F.; Gao, Y.; Li, Z. J.; Liu, J. J.; Guo, K. Synlett 2019, 30, 329.  doi: 10.1055/s-0037-1611183

    17. [17]

      Gholizadeh, M.; Baltork, I. M. Bull. Korean Chem. Soc. 2005, 26, 11.

    18. [18]

      Castle, R. N.; Riebsomer, J. L. ACS Sustainable Chem. Eng. 1955, 21, 142.

    19. [19]

      Richard, R. B.; Louise, J. B. J. Anal. Appl. Pyrolysis 2004, 71, 223.  doi: 10.1016/S0165-2370(03)00090-1

    20. [20]

      Cui, L. Q.; Liu, K.; Zhang, C. Org. Biomol. Chem. 2011, 9, 2258.  doi: 10.1039/c0ob00722f

    21. [21]

      Kaneyuki, H. Bull. Chem. Soc. Jpn. 1961, 35, 519.

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Peiyu Zhang Aixin Song Jingcheng Hao Jiwei Cui . 高频超声法制备聚多巴胺薄膜综合实验. University Chemistry, 2025, 40(6): 210-214. doi: 10.12461/PKU.DXHX202407081

    3. [3]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    4. [4]

      Jiarui Wu Gengxin Wu Yan Wang Yingwei Yang . Crystal Engineering Based on Leaning Towerarenes. University Chemistry, 2024, 39(3): 58-62. doi: 10.3866/PKU.DXHX202304014

    5. [5]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    6. [6]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    7. [7]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064

    8. [8]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    9. [9]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    10. [10]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    11. [11]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    12. [12]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    13. [13]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    14. [14]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    15. [15]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    16. [16]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    17. [17]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    18. [18]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    19. [19]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    20. [20]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

Metrics
  • PDF Downloads(13)
  • Abstract views(1576)
  • HTML views(262)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return