Citation: Li Xiuying, Li Yajun, Wei Xiansheng, Luo Jinrong, Huang Guobao, Tan Minxiong. Recent Progress on Reactions of Arylmethyl Azides with Alkenes[J]. Chinese Journal of Organic Chemistry, ;2019, 39(7): 1831-1836. doi: 10.6023/cjoc201903001 shu

Recent Progress on Reactions of Arylmethyl Azides with Alkenes

  • Corresponding author: Huang Guobao, lzjx0915@163.com Tan Minxiong, tanmx00@163.com
  • These authors contributed equally to this work
  • Received Date: 1 March 2019
    Revised Date: 30 March 2019
    Available Online: 16 July 2019

    Fund Project: the Yulin Normal University Research 201810606010Project supported by the National Natural Science Foundation of China (No. 21761033), the Natural Science Foundation of Guangxi (Nos. 2017GXNSFBA198211, 2018GXNSFAA294064), and the Yulin Normal University Research (Nos. 2018YJKY36, 201810606010)the National Natural Science Foundation of China 21761033the Yulin Normal University Research 2018YJKY36the Natural Science Foundation of Guangxi 2018GXNSFAA294064the Natural Science Foundation of Guangxi 2017GXNSFBA198211

Figures(11)

  • Arylmethyl azides (ArCH2N3) as one of the significant nitrogen sources with stable properties, simple synthesis, have been widely used in a wide range of organic synthesis reactions. The recent progress (2014~2018) on reactions of arylmethyl azides with alkenes is summarized. In addition, the organic reactions of arylmethyl azides with types of alkenes are described respectively, with their scope of substrates and reaction mechanism. It is hoped that this review can be referred to the future application in organic synthesis of arylmethyl azides with alkenes.
  • 加载中
    1. [1]

      Grecianl, S.; Aubé, J. Organic Azides: Syntheses and Applications, Vol. 7, Eds.: Bräse, S.; Banert, K., John Wiley & Sons, Ltd, Chichester, UK, 2010, pp. 191~310.

    2. [2]

      (a) Bräse, S.; Gil, C.; Knepper, K.; Zimmermann, V. Angew. Chem., Int. Ed. 2005, 44, 5188.
      (b) Lee, J. H.; Gupta, S.; Jeong, W.; Rhee, Y. H.; Park, J. Angew. Chem., Int. Ed. 2012, 51, 10851.
      (c) Han, J.; Jeon, M.; Pak, H. K.; Rhee, Y. H.; Park, J. Adv. Synth. Catal. 2014, 356, 2769.
      (d) Gupta, S.; Han, J.; Kim, Y.; Lee, S. W.; Rhee, Y. H.; Park. J. J. Org. Chem. 2014, 79, 9094.
      (e) Chou, H.-H.; Raines, R. T. J. Am. Chem. Soc. 2013, 135, 14936.
      (f) Zhang, X.-X.; Sun, X.-P.; Zhang, H.-F.; Cui, X.-L.; Ma, M.-T. Chin. J. Org. Chem. 2015, 35, 1469(in Chinese).
      (张小祥, 孙小萍, 张海飞, 崔杏丽, 马猛涛, 有机化学, 2015, 35, 1469.)
      (g) Zhang, W.-S.; Xu, W.-J.; Kuang, C.-X. Chin. J. Org. Chem. 2015, 35, 2059(in Chinese).
      (张文生, 许文静, 匡春香, 有机化学, 2015, 35, 2059.)

    3. [3]

      (a) Song, Z.-Q.; Zhao, Y.-M.; Zhai, H.-B. Org. Lett. 2011, 13, 6331.
      (b) Lamani, M.; Devadig, P.; Prabhu, K. R. Org. Biomol. Chem. 2012, 10, 2753.
      (c) Tummatorn, J.; Thongsornkleeb, C.; Ruchirawat, S.; Gettongsong, T. Org. Biomol. Chem. 2013, 11, 1463.

    4. [4]

      Shin, K.; Kim, H.; Chang, S. Acc. Chem. Res. 2015, 48, 1040.  doi: 10.1021/acs.accounts.5b00020

    5. [5]

      Li, J.-L.; Wang, Y.-C.; Li, W.-Z.; Wang, H.-S.; Mo, D.-L.; Pan, Y.-M. Chem. Commun. 2015, 51, 17772.  doi: 10.1039/C5CC06487B

    6. [6]

      Tummatorn, J.; Poonsilp, P.; Nimnual, P.; Janprasit, J.; Thongsornkleeb, C.; Ruchirawat, S. J. Org. Chem. 2015, 80, 4516.  doi: 10.1021/acs.joc.5b00375

    7. [7]

      Wang, Y.-C.; Li, J.-L.; He, Y.; Xie, Y.-Y.; Wang, H.-S.; Pan, Y.-M. Adv. Synth. Catal. 2015, 357, 3229.  doi: 10.1002/adsc.201500584

    8. [8]

      Wang, Y.-C.; Xie, Y.-Y.; Qu, H.-E.; Wang, H.-S.; Pan, Y.-M.; Huang, F. -P. J. Org. Chem. 2014, 79, 4463.  doi: 10.1021/jo5004339

    9. [9]

      Zefirov, N. S.; Chapovskaya, N. K.; Kolesnikov, V. V. Chem. Commun. 1971, 1001.

    10. [10]

      Piet, J. C.; Le H. G.; Cailleux, P.; Benhaoua, H.; Carrie, R. Bull. Soc. Chim. Belg. 1996, 105, 33.

    11. [11]

      Amantini, D.; Fringuelli, F.; Piermatti, O.; Pizzo, F.; Zunino, E.; Vaccaro, L. J. Org. Chem. 2005, 70, 6526.  doi: 10.1021/jo0507845

    12. [12]

      Wang, Y.-C.; Xie, Y.-Y.; Tan, X.-C.; Wang, H.-S.; Pan, Y.-M. Org. Biomol. Chem. 2015, 13, 513.  doi: 10.1039/C4OB01801J

    13. [13]

      Donald, A. S. R.; Marks, R. E. J. Chem. Soc. C 1967, 1188.  doi: 10.1039/j39670001188

    14. [14]

      Casey, M.; Donnelly, J. A.; Ryan, J. C.; Ushioda, S. ARKIVOC 2003, 7, 310.

    15. [15]

      (a) Reddy, D. S.; Judd, W. R.; Aubé, J. Org. Lett. 2003, 5, 3899.
      (b) Silvio, C.; Amenson, T. G. Tetrahedron Lett. 2012, 53, 6710.

    16. [16]

      Mahoney, J. M.; Smith, C. R.; Johnston, J. N. J. Am. Chem. Soc. 2005, 127, 1354.  doi: 10.1021/ja045608c

    17. [17]

      Jumreang, T.; Charnsak, T.; Somsak, R.; Tanita, G. Org. Biomol. Chem. 2013, 11, 1463.  doi: 10.1039/c3ob27493d

    18. [18]

      Xie, Y.-Y.; Wang, Y.-C.; Qu, H.-E.; Tan, X.-C.; Wang, H.-S.; Pan, Y.-M. Adv. Synth. Catal. 2014, 356, 3347.  doi: 10.1002/adsc.201400315

    19. [19]

      Gangaprasad, D.; Paul Raj, J.; Kiranmye, T.; Sagubar Sadik, S.; Elangovan, J. RSC Adv. 2015, 5, 63473.  doi: 10.1039/C5RA08693K

    20. [20]

      Yang, W.-C.; Miao, T.; Li, P.-H.; Wang, L. RSC Adv. 2015, 5, 95833.  doi: 10.1039/C5RA16974G

    21. [21]

      Gangaprasad, D.; Paul Raj, J.; Kiranmye, T.; Karthikeyan, K.; Elangovan, J. Eur. J. Org. Chem. 2016, 5642.

    22. [22]

      Xie, Y.-Y.; Wang, Y.-C.; He, Y.; Hu, D.-C.; Wang, H.-S.; Pan, Y.-M. Green Chem. 2017, 19, 656.  doi: 10.1039/C6GC01553K

    23. [23]

      Yan, Z.-M.; Wu, N.; Liang, D.; Wang, H.-S.; Pan, Y.-M. Org. Lett. 2014, 16, 4048.  doi: 10.1021/ol501930f

  • 加载中
    1. [1]

      Zhenxing Liu Jiaen Hu Zishi Cheng Xinqi Hao . 基础有机化学教学中烯烃的氧化反应. University Chemistry, 2025, 40(6): 139-144. doi: 10.12461/PKU.DXHX202408107

    2. [2]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    3. [3]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    4. [4]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    5. [5]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    6. [6]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    7. [7]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    8. [8]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    9. [9]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    10. [10]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    11. [11]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    12. [12]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    13. [13]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    14. [14]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    15. [15]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    16. [16]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    17. [17]

      Lancanghong Chen Xingtai Yu Tianlei Zhao Qizhi Yao . Exploration of Abnormal Phenomena in Iodometric Copper Quantitation Experiment. University Chemistry, 2025, 40(7): 315-320. doi: 10.12461/PKU.DXHX202408089

    18. [18]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    19. [19]

      Xudong Liu Huili Fan Junping Xiao Min Yang Yan Li . Teaching Approaches to the AE + AN Mechanism of Electrophilic Addition Reactions between Olefins and Inorganic Acids in Organic Chemistry. University Chemistry, 2025, 40(7): 367-372. doi: 10.12461/PKU.DXHX202409041

    20. [20]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

Metrics
  • PDF Downloads(21)
  • Abstract views(2015)
  • HTML views(644)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return