Citation: Yang Zhenhua, Zhu Jianan, Wen Caiyue, Ge Yingxiang, Zhao Shengyin. Recent Advances in Functionalization of Double Bond Based on Maleimides[J]. Chinese Journal of Organic Chemistry, ;2019, 39(9): 2412-2427. doi: 10.6023/cjoc201902012 shu

Recent Advances in Functionalization of Double Bond Based on Maleimides

  • Corresponding author: Zhao Shengyin, syzhao8@dhu.edu.cn
  • Received Date: 14 February 2019
    Revised Date: 10 April 2019
    Available Online: 19 September 2019

    Fund Project: the Shanghai Municipal Natural Science Foundation 15ZR1401400Project supported by the Shanghai Municipal Natural Science Foundation (No. 15ZR1401400) and the National Undergraduate Training Program for Innovation and Entrepreneurship in Donghua University (2018)

Figures(7)

  • Maleimide, a common motif in a variety of natural alkaloids, has been extensively investigated due to its noteworthy biological activities and optical properties. Additionally, it can be transformed into many important heterocyclic frameworks such as succinimides, pyrrolidines, and 2-pyrrolidones. Thus, a great deal of attention has been focused on the development of new synthetic routes to access polyfunctionalized maleimides. In this article, the recent research progress in functionalization of double bond is reviewed based on maleimides according to Michael addition, oxidative coupling and cycloaddition reaction.
  • 加载中
    1. [1]

      Lavrard, H.; Rodriguez, F.; Delfourne, E. Bioorg.Med.Chem.Lett.2014, 22, 1961.  doi: 10.1002/cmdc.201500025

    2. [2]

      Chien, S.-C.; Chen, M.-L.; Kuo, H.-T.; Tsai, Y.-C.; Lin, B.-F.; Kuo, Y.-H. J.Agric.Food Chem.2008, 56, 7017.  doi: 10.1021/jf801171x

    3. [3]

      (a) Ho, S.-Y.; Alam, J.; Jeyaraj, D.-A.; Wang, W.; Lin, G.-R.; Ang, S.-H.; Tan, E.-S.-W.; Lee, M.-A.; Ke, Z.; Madan, B.; Virshup, D.-M.; Ding, L.-J.; Manoharan, V.; Chew, Y.-S.; Low, C.-B.; Pendharkar, V.; Sangthongpitag, K.; Hill, J.; Keller, T.-H.; Poulsen, A. J.Med.Chem.2017, 60, 6678.
      (b) Alam, J.; Poulsen, A.; Ho, S.-Y.; Wang, W.-L.; Duraiswamy, A. WO 2015094118, 2008[Chem.Abstr.2015, 163, 132777].

    4. [4]

      Kayser, S.; Levis, M.-J.; Schlenk, R.-F. Expert Rev.Clin.Pharmacol. 2017, 10, 1177. (b) Levis, M. Blood 2017, 129, 3403.  doi: 10.1080/17512433.2017.1387051

    5. [5]

      Shimokawa, J.; Chiyoda, K.; Umihara, H.; Fukuyama, T. Chem.Pharm.Bull.2016, 64, 1239.
      (b) Cai, S.-L.; Song, R.; Dong, H.-Q.; Lin, G.-Q.; Sun, X.-W. Org.Lett.2016, 18, 1996.

    6. [6]

      (a) Daly, M.-J.; Jones, G.-W.; Nicholls, P.-J.; Smith, H.-J.; Rowlands, M.-G.; Bunnett, M.-A. J.Med.Chem.1986, 29, 520.
      (b) Sharma, D.-K.; Rajput, V.-S.; Singh, S.; Sharma, R.; Khan, I.A.; Mukherjee, D. ChemistrySelect 2016, 1, 1954.

    7. [7]

      (a) Driller, K.-M.; Klein, H.; Jackstell, R.; Beller, M. Angew.Chem., Int.Ed.2009, 48, 6041.
      (b) Mathur, P.; Joshi, R.-K.; Rai, D.-K.; Jha, B.; Mobin, S.-M. Dalton. Trans.2012, 41, 5045.

    8. [8]

      Henon, H.; Messaoudi, S.; Hugon, B.; Anizon, F.; Pfeiffer, B.; Prudhomme, M. Tetrahedron 2005, 61, 5599.  doi: 10.1016/j.tet.2005.03.101

    9. [9]

      An, Y.-L.; Shao, Z.-Y.; Cheng, J.; Zhao, S.-Y. Synthesis 2013, 45, 2719.  doi: 10.1055/s-0033-1339515

    10. [10]

      Lanke, V.; Bettadapur, K.-R.; Prabhu, K.-R. Org.Lett.2015, 17, 4662.  doi: 10.1021/acs.orglett.5b01809

    11. [11]

      Muniraj, N.; Prabhu, K.-R. ACS Omega 2017, 2, 4470.  doi: 10.1021/acsomega.7b00870

    12. [12]

      Zhang, Z.; Han, S.; Tang, M.; Ackermann, L.; Li, J. Org.Lett.2017, 19, 3315.  doi: 10.1021/acs.orglett.7b01480

    13. [13]

      Liu, S.-L.; Li, Y.; Guo, J.-R.; Yang, G.-C.; Li, X.-H.; Gong, J.-F.; Song, M.-P. Org.Lett.2017, 19, 4042.  doi: 10.1021/acs.orglett.7b01795

    14. [14]

      Sherikar, M.-S.; Kapanaiah, R.; Lanke, V.; Prabhu, K.-R. Chem.Commun.2018, 54, 11200.  doi: 10.1039/C8CC06264A

    15. [15]

      Pan, C.; Wang, Y.; Wu, C.; Yu, J.-T. Org.Biomol.Chem.2018, 16, 693.  doi: 10.1039/C7OB03039H

    16. [16]

      Koltunov, K.-Y.; Prakash, G.-K.-S.; Rasul, G.; Olah, G.-A. Eur.J.Org.Chem.2006, 4861.  doi: 10.1002/ejoc.200600486

    17. [17]

      Yang, Z.-H.; Chen, Z.-H.; An, Y.-L.; Zhao, S.-Y. RSC Adv.2016, 6, 23438.  doi: 10.1039/C6RA00136J

    18. [18]

      Bettadapur, K.-R.; Lanke, V.; Prabhu, K.-R. Org.Lett.2015, 17, 4658.  doi: 10.1021/acs.orglett.5b01810

    19. [19]

      Mandal, R.; Emayavaramban, B.; Sundararaju, B. Org.Lett.2018, 20, 2835.  doi: 10.1021/acs.orglett.8b00761

    20. [20]

      Li, F.; Zhou, Y.; Yang, H.; Liu, D.; Sun, B.; Zhang, F.-L. Org.Lett.2018, 1, 146.  doi: 10.1021/acs.orglett.7b03502

    21. [21]

      Yu, J.T.; Chen, R.; Jia, H.; Pan, C. J.Org.Chem.2018, 83, 12086.  doi: 10.1021/acs.joc.8b02059

    22. [22]

      Han, S.-H.; Kim, S.; De, U.; Mishra, N.-K.; Park, J.; Sharma, S.; Kwak, J.-H.; Han, S.; Kim, H.-S.; Kim, I.-S. J.Org.Chem.2016, 81, 12416.  doi: 10.1021/acs.joc.6b02577

    23. [23]

      He, Q.; Yamaguchi, T.; Chatani, N. Org.Lett.2017, 19, 4544.  doi: 10.1021/acs.orglett.7b02135

    24. [24]

      Chen, X.; Ren, J.; Xie, H.; Sun, W.; Sun, M.; Wu, B. Org.Chem.Front.2018, 5, 184.  doi: 10.1039/C7QO00687J

    25. [25]

      Bettadapur, K.-R.; Lanke, V.; Prabhu, K.-R. Chem.Commun.2017, 53, 6251.  doi: 10.1039/C7CC02392H

    26. [26]

      Mandal, A.; Sahoo, H.; Dana, S.; Baidya, M. Org.Lett.2017, 19, 4138.  doi: 10.1021/acs.orglett.7b01964

    27. [27]

      Muniraj, N.; Prabhu, K.-R. J.Org.Chem.2017, 82, 6913.  doi: 10.1021/acs.joc.7b01094

    28. [28]

      Qrareya, H.; Ravelli, D.; Fagnoni, M.; Albinia, A. Adv.Synth.Catal.2013, 355, 2891.  doi: 10.1002/adsc.201300598

    29. [29]

      Capaldo, L.; Buzzetti, L.; Merli, D.; Fagnoni, M.; Ravelli, D. J.Org.Chem.2016, 81, 7102.  doi: 10.1021/acs.joc.6b00984

    30. [30]

      Han, S.; Park, J.; Kim, S.; Lee, S.-H.; Sharma, S.; Mishra, N.-K.; Jung, Y.-H.; Kim, I.-S. Org.Lett.2016, 18, 4666.  doi: 10.1021/acs.orglett.6b02295

    31. [31]

      (a) Cunha, S.; Rodovalho, W.; Azevedo, N.R.; Mendonca, M.-D.-O.; Lariucci, C.; Vencato, I. J.Brazil.Chem.Soc. 2002, 13, 629.
      (b) Gomez-Torres, E.; Alonso, D.-A.; Gomez-Bengoa, E.; Najera, C. Eur.J.Org.Chem.2013, 2013, 1434.
      (c) Noeth, J.; Frankowski, K.-J.; Neuenswander, B.; Aube, J.; Reiser, O. J. Comb. Chem.2008, 10, 456.

    32. [32]

      Zhao, G.-L.; Xu, Y.-M.; Sunden, H.; Eriksson, L.; Sayah, M.; Cordova, A. Chem.Commun.2007, 7, 734.  doi: 10.1039/b614962f

    33. [33]

      Yu, F.; Jin, Z.; Huang, H.; Ye.T.; Liang, X.; Ye, J.-X. Org.Biomol.Chem. 2010, 8, 4767.  doi: 10.1039/c0ob00154f

    34. [34]

      Yu, F.; Sun, X.; Jin, Z.; Wen, S.; Liang, X.; Ye, J.-X. Chem.Commun.2010, 46, 4589.  doi: 10.1039/c0cc00774a

    35. [35]

      Muramulla, S.; Ma, J.-A.; Zhao, J.-C.-G. Adv.Synth.Catal.2013, 355, 1260.  doi: 10.1002/adsc.201300041

    36. [36]

      Vizcaino-Milla, P.; Sansano, J.-M.; Najera, C.; Fiser, B.; Gomez-Bengoa, E. Synthesis 2015, 47, 2199.  doi: 10.1055/s-0034-1380718

    37. [37]

      Nakashima, K.; Kawada, M.; Hirashima, S.; Kato, M.; Koseki, Y.; Miura, T. Synlett 2015, 26, 1248.  doi: 10.1055/s-0034-1380382

    38. [38]

      Wang, J.-J.; Dong, X.-J.; Wei, W.-T.; Yan, M. Tetrahedron: Asymmetry 2011, 22, 690.  doi: 10.1016/j.tetasy.2011.04.009

    39. [39]

      Bai, J.-F.; Wang, L.-L.; Peng, L.; Guo, Y.-L.; Jia, L.-N.; Tian, F.; He, G.-Y.; Xu, X.-Y.; Wang, L.-X. J.Org.Chem.2012, 77, 2947.  doi: 10.1021/jo2025288

    40. [40]

      Shirakawa, S.; Terao, S.J.; He, R.; Maruoka, K. Chem.Commun.2011, 47, 10557.  doi: 10.1039/c1cc14043d

    41. [41]

      Gomez-Torres, E.; Alonso, D.A.; Gomez-Bengoa, E.; Najera, C. Org.Lett.2011, 13, 6106.  doi: 10.1021/ol202599h

    42. [42]

      Li, X.; Hu, S.; Xi, Z.; Zhang, L.; Luo, S.; Cheng, J.-P. J.Org.Chem.2010, 75, 8697.  doi: 10.1021/jo101832e

    43. [43]

      Liao, Y.-H.; Liu, X.-L.; Wu, Z.-J.; Cun, L.-F.; Zhang, X.-M.; Yuan, W.-C. Org.Lett.2010, 12, 2896.  doi: 10.1021/ol100822k

    44. [44]

      Feng, J.; Zhang, Y.; Lin, L.; Yao, Q.; Liu, X.; Feng, X. Chem.Commun.2015, 51, 10554.  doi: 10.1039/C5CC03203B

    45. [45]

      Yarlagadda, S.; Reddy, C.-R.; Ramesh, B.; Kumar, G.-R.; Sridhar, B.; Reddy, B.-V.-S. Eur.J.Org.Chem.2018, 1364.  doi: 10.1021/acs.orglett.6b03473

    46. [46]

      Li, J.; Qiu, S.; Ye, X.; Zhu, B.; Liu, H.; Jiang, Z. J.Org.Chem.2016, 81, 11916.  doi: 10.1021/acs.joc.6b02384

    47. [47]

      Iyer, P.-S.; O'Malley, M.-M.; Lucas, M.-C. Tetrahedron Lett.2007, 48, 4413.  doi: 10.1016/j.tetlet.2007.04.084

    48. [48]

      Shintani, R.; Duan, W.-L.; Nagano, T.; Okada, A.; Hayashi, T. Angew.Chem., Int.Ed.2005, 44, 4611.  doi: 10.1002/anie.200501305

    49. [49]

      Berhal, F.; Wu, Z.; Genet, J.; Ayad, T.; Ratovelomanana-Vidal, V. J.Org.Chem.2011, 76, 6320.  doi: 10.1021/jo201187c

    50. [50]

      Korenaga, T.; Ko, A.; Shimamda, K. J.Org.Chem.2013, 78, 9975.  doi: 10.1021/jo4014707

    51. [51]

      Gopula, B.; Yang, S.-H.; Kuo, T.-S.; Hsieh, J.-C.; Wu, P.-Y.; Henschke, J.-P.; Wu, H.-L. Chem.Eur.J. 2015, 21, 11050.  doi: 10.1002/chem.201501059

    52. [52]

      Kumar, V.; Mitra, R.; Bhattarai, S.; Nair, V.-A. Synth.Commun.2011, 41, 392.  doi: 10.1080/00397910903576651

    53. [53]

      Raycroft, M.-A.-R.; Racine, K.-E.; Rowley, C.-N.; Keillor, J.-W. J.Org.Chem.2018, 83, 11674.  doi: 10.1021/acs.joc.8b01638

    54. [54]

      Han, F.; Yang, L.; Li, Z.; Xia, C.-G. Org.Biomol.Chem.2012, 10, 346.  doi: 10.1039/C1OB06346D

    55. [55]

      An, Y.-L.; Deng, Y.-X.; Zhang, W.; Zhao, S.-Y. Synthesis 2015, 47, 1581.  doi: 10.1055/s-0034-1380404

    56. [56]

      Velchinskaya, E.; Petsushak, B.; Rogal, A. Chem.Heterocycl.Compd.2007, 43, 695.  doi: 10.1007/s10593-007-0113-y

    57. [57]

      Uno, B.-E.; Deibler, K.-K.; Villa, C.; Raghuraman, A.; Scheidt, K.-A. Adv.Synth.Catal.2018, 360, 1719.  doi: 10.1002/adsc.201800160

    58. [58]

      Uno, B.-E.; Dicken, R.-D.; Redfern, L.-R.; Stern, C.-M.; Krzywicki, G.-G.; Scheidt, K.-A. Chem.Sci.2018, 9, 1634.  doi: 10.1039/C7SC05205G

    59. [59]

      Jiang, Z.; Zhang, Y.; Ye, W.; Tan, C.-H. Tetrahedron Lett.2007, 48, 51.  doi: 10.1016/j.tetlet.2006.11.019

    60. [60]

      Balint, E.; Takacs, J.; Drahos, L.; Keglevich, G. Heteroat.Chem.2012, 23, 235.  doi: 10.1002/hc.21007

    61. [61]

      Molleti, N.; Bjornberg, C.; Kong, J.-Y. Org.Biomol.Chem.2016, 14, 10695.  doi: 10.1039/C6OB01987K

    62. [62]

      (a) Bourderioux, A.; Routier, S.; Beneteau, V.; Merour, J.-Y. Tetrahedron 2007, 63, 9465.
      (b) Bouissane, L.; Sestelo, J.-P.; Sarandeses, L.A. Org.Lett.2009, 11, 1285.
      (c) Awuah, E.; Capretta, A. J.Org.Chem.2011, 76, 3122.
      (d) Souffrin, A.; Croix, C.; Viaud-Massuard, M.-C. Eur.J.Org.Chem.2012, 13, 2499

    63. [63]

      Roshchin, A.-I.; Polunin, E.-V. Mendeleev Commun.2008, 18, 332.  doi: 10.1016/j.mencom.2008.11.016

    64. [64]

      Lim, L.-H.; Zhou, J. Org.Chem.Front.2015, 2, 775.  doi: 10.1039/C5QO00015G

    65. [65]

      Jafarpour, F.; Shamsianpour, M.; Issazadeh, S.; Dorrani, M.; Hazrati, H. Tetrahedron 2017, 73, 1668.  doi: 10.1016/j.tet.2017.01.069

    66. [66]

      Jafarpour, F.; Shamsianpour, M. RSC Adv.2016, 6, 103567.  doi: 10.1039/C6RA24420C

    67. [67]

      Yang, Z.-H.; An, Y.-L.; Chen, Y.; Shao, Z.-Y.; Zhao, S.-Y. Adv.Synth.Catal.2016, 358, 3869.  doi: 10.1002/adsc.201600812

    68. [68]

      Dana, S.; Mandal, A.; Sahoo, H.; Baidya, M. Org.Lett.2017, 19, 1902.  doi: 10.1021/acs.orglett.7b00674

    69. [69]

      An, Y.-L.; Zhang, H.-H.; Yang, Z.-H.; Lin, L.; Zhao, S.-Y. Eur.J.Org.Chem. 2016, 2016, 5405.

    70. [70]

      Kong, D.-H.; An, Y.-L.; Shao, Z.-Y.; Zhao, S.-Y. J.Chem.Res.2018, 42, 476.  doi: 10.3184/174751918X15359929315492

    71. [71]

      (a) Yang, Z.-H.; Tan, H.-R.; An, Y.-L.; Zhao, Y.-W.; Lin, H.-P.; Zhao, S.-Y. Adv.Synth.Catal.2018, 360, 173.
      (b) Yang, Z.-H.; Zhu, J.-N.; Jin, Z.-H.; Zheng, J.; Zhao, S.-Y. Synthesis 2018, 50, 4627.

    72. [72]

      Yang, Z.-H.; Tan, H.-R.; Zhu, J.-N.; Zheng, J.; Zhao, S.-Y. Adv.Synth.Catal. 2018, 360, 1523.  doi: 10.1002/adsc.201701431

    73. [73]

      (a) Maruoka, H.; Okabe, F.; Koutake, Y.; Fujioka, T.; Yamagata, K. Heterocycles 2009, 77, 617.
      (b) Bai, J.-F.; Guo, Y.-L.; Peng, L.; Jia, L.-N.; Xu, X.-Y.; Wang, L.-X. Tetrahedron 2013, 69, 1229.
      (b) Petrelli, A.; Samain, E.; Pradeau, S.; Halila, S.; Fort, S. ChemBioChem 2017, 18, 206.

    74. [74]

      Baker, J.-R.; Tedaldi, L.-M.; Aliev, A.-E. Chem.Commun. 2012, 48, 4725.  doi: 10.1039/c2cc31673k

    75. [75]

      Lin, C.; Zhen, L.; Cheng, Y.; Du, H.-J.; Zhao, H.; Wen, X.; Kong, L.-Y.; Xu, Q.-L.; Sun, H. Org.Lett.2015, 17, 2684.  doi: 10.1021/acs.orglett.5b01078

    76. [76]

      Ding, G.; Wu, X.; Jiang, L.; Zhang, Z.; Xie, X. Org.Lett.2017, 19, 6048.  doi: 10.1021/acs.orglett.7b02739

    77. [77]

      Qiu, S.; Lee, R.; Zhu, B.; Coote, M.-L.; Zhao, X.; Jiang, Z. J.Org.Chem.2016, 81, 8061.  doi: 10.1021/acs.joc.6b01451

    78. [78]

      Nishikawa, Y.; Nakano, S.; Tahira, Y.; Terazawa, K.; Yamazaki, K.; Kitamura, C.; Hara, O. Org.Lett.2016, 18, 2004.  doi: 10.1021/acs.orglett.6b00608

    79. [79]

      Kumar, G.-V.; Govindaraju, M.; Renuka, N.; Khatoon, B.-B.-A.; Mylarappa, B.-N.; Kumar, K.-A. Rasayan J.Chem.2012, 5, 338.

    80. [80]

      Liu, G.-N.; Luo, R.-H.; Zhou, Y.; Zhang, X.-J.; Li, J.; Yang, L.-M.; Zheng, Y.-T.; Liu, H. Molecules 2016, 21, 1198/1.  doi: 10.3390/molecules21091198

    81. [81]

      Zhang, X.-N.; Chen, G.-Q.; Tang, X.-Y.; Wei, Y.; Shi, M. Angew.Chem., Int.Ed.2014, 53, 10768.  doi: 10.1002/anie.201406100

    82. [82]

      Sharma, S.; Han, S.H.; Oh, Y.; Mishra, N.-K.; Lee, S.-H.; Oh, J.-S.; Kim, I.-S. Org.Lett.2016, 18, 2568.  doi: 10.1021/acs.orglett.6b00909

    83. [83]

      Morita, T.; Akita, M.; Satoh, T.; Kakiuchi, F.; Miura, M. Org.Lett.2016, 18, 4598.  doi: 10.1021/acs.orglett.6b02244

    84. [84]

      Yu, W.; Zhang, W.; Liu, Y.; Liu, Z.; Zhang, Y. Org.Chem.Front.2017, 4, 77.  doi: 10.1039/C6QO00479B

    85. [85]

      Zhu, C.; Falck, J.-R. Chem.Commun.2012, 48, 1674.  doi: 10.1039/C2CC16963K

    86. [86]

      Miura, W.; Hirano, K.; Miura, M. Org.Lett.2015, 17, 4034.  doi: 10.1021/acs.orglett.5b01940

  • 加载中
    1. [1]

      Zhanhui Yang Jiaxi Xu . (m+n+…) or [m+n+…]cycloaddition?. University Chemistry, 2025, 40(3): 387-389. doi: 10.12461/PKU.DXHX202406032

    2. [2]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    3. [3]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    4. [4]

      Xudong Liu Huili Fan Junping Xiao Min Yang Yan Li . Teaching Approaches to the AE + AN Mechanism of Electrophilic Addition Reactions between Olefins and Inorganic Acids in Organic Chemistry. University Chemistry, 2025, 40(7): 367-372. doi: 10.12461/PKU.DXHX202409041

    5. [5]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    6. [6]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    7. [7]

      Jiatong Hu Qiyi Wang Ruiwen Tang Jiajing Feng . Photocatalytic Journey of Perylene Diimides in a Competitive Arena. University Chemistry, 2025, 40(5): 328-333. doi: 10.12461/PKU.DXHX202407015

    8. [8]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    9. [9]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    10. [10]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    11. [11]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    12. [12]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    13. [13]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    14. [14]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    15. [15]

      Tao Wen Tao Zhang Changguo Sun Jinyu Liu . Preparation of Dess-Martin Reagent and Its Application in Oxidizing Cyclohexanol. University Chemistry, 2024, 39(5): 20-26. doi: 10.3866/PKU.DXHX202309055

    16. [16]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    17. [17]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    18. [18]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    19. [19]

      Zhenxing Liu Jiaen Hu Zishi Cheng Xinqi Hao . 基础有机化学教学中烯烃的氧化反应. University Chemistry, 2025, 40(6): 139-144. doi: 10.12461/PKU.DXHX202408107

    20. [20]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

Metrics
  • PDF Downloads(160)
  • Abstract views(6093)
  • HTML views(2598)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return