Citation: Wang Zhanlin, Li Ruyi, Qian Huimin, Yao Changsheng. Effect of Temperature on N-Heterocyclic Carbene-Catalyzed[3+3] Annulation of α-Bromoenal with Enaminone[J]. Chinese Journal of Organic Chemistry, ;2019, 39(7): 2075-2083. doi: 10.6023/cjoc201901052 shu

Effect of Temperature on N-Heterocyclic Carbene-Catalyzed[3+3] Annulation of α-Bromoenal with Enaminone

  • Corresponding author: Yao Changsheng, csyao@jsnu.edu.cn
  • Received Date: 30 January 2019
    Revised Date: 13 March 2019
    Available Online: 21 July 2019

    Fund Project: the National Natural Science Foundation of China 21372101the National Natural Science Foundation of China 21871113Project supported by the National Natural Science Foundation of China (Nos. 21871113, 21372101)

Figures(7)

  • The regioselectivity of N-heterocyclic carbene (NHC)-catalyzed[3+3] annulation of α-bromoenal with enaminone is dependent on the temperature. The reactions performed at 35℃ could regiospecifically give the derivatives of fused pyranone instead of previously reported quinolones, which provided a new shortcut to pyranone with mild reaction condition, broad substrate scope, high yields and operational simplicity.
  • 加载中
    1. [1]

      (a) He, Z.; Qi, X.; She, Z.; Zhao, Y.; Li, S.; Tang, J.; Gao, G.; Lan, Y.; You, J. J. Org. Chem. 2017, 82, 1403.
      (b) Maddox, S. M.; Dinh, A. N.; Armenta, F.; Um, J.; Gustafson, J. L. Org. Lett. 2016, 18, 5476.
      (c) Hyster, T. K.; Farwell, C. C.; Buller, A. R.; McIntosh, J. A.; Arnold, F. H. J. Am. Chem. Soc. 2014, 136, 15505.
      (d) Hernández-Torres, J. M.; Achkar, J.; Wei, A. J. Org. Chem. 2004, 69, 7206.
      (e) Trost, B. M.; Rudd, M. T.; Costa, M. G.; Lee, P. I.; Pomerantz, A. E. Org. Lett. 2004, 6, 4235.
      (f) Kim, H. Y.; Lee, S.; Kim, S.; Oh, K. Org. Lett. 2015, 17, 450.

    2. [2]

      Kao, T.; Peng, B.; Liang, M.; Lee, C.; Chen, I.; Shia, K.; Wu, Y. J. Org. Chem. 2018, 83, 14688.  doi: 10.1021/acs.joc.8b01866

    3. [3]

      Pagire, S. K.; Hossain, A.; Reiser, O. Org. Lett. 2018, 20, 648.  doi: 10.1021/acs.orglett.7b03790

    4. [4]

      Li, X.; Wang, S.; Li, S.; Li, K.; Mo, X.; Liu, L.; Chang, W.; Li, J. J. Org. Chem. 2019, 84, 1288.  doi: 10.1021/acs.joc.8b02730

    5. [5]

    6. [6]

      (a) Mukherjee, S.; Mondal, S.; Patra, A.; Gonnade, R. G.; Biju, A. T. Chem. Commun. 2015, 51, 9559.
      (b) Chen. J. Huang, Y. Nat. Commun. 2014, 5, 3437.
      (c) Huang, X. L.; He, L.; Shao. P. L.; Ye, S. Angew. Chem., Int. Ed. 2009, 48, 192;
      (d) Wang, Y.; Wu, B.; Zheng, L.; Wei, D.; Tang, M. Org. Chem. Front. 2016, 3, 190.
      (e) Que, Y.; Li, T.; Yu, C.; Wang, X. S.; Yao, C. J. Org. Chem. 2015, 80, 3289.

    7. [7]

      (a) Zhang, C.; Hooper, J. F.; Lupton, D. W. ACS Catal. 2017, 7, 2583.
      (b) Mahatthananchai, J.; Bode, J. W. Acc. Chem. Res. 2014, 47, 696.
      (c) Levens, A.; Lupton, D. W. Synlett 2017, 28, 415.
      (d) Flanigan, D. M.; Romanov-Michailidis, F.; White, N. A.; Rovis, T. Chem. Rev. 2015, 115, 9307.
      (e) Ryan, S. J.; Candish, L.; Lupton, D. W. Chem. Soc. Rev. 2013, 42, 4906.
      (f) Reyes, E.; Uria, U.; Carrillo, L.; Vicario, J. L. Synthesis 2017, 49, 451.

    8. [8]

      (a) Lu, H.; Liu, J.-Y.; Li, C.-G.; Lin, J.-B.; Liang, Y.-M.; Xu, P.-F. Chem. Commun. 2015, 51, 4473.
      (b) Xu, J.; Jin, Z.; Chi, Y. R. Org. Lett. 2013, 15, 5028.
      (c) Cheng, J.; Huang, Z.; Chi, Y. R. Angew. Chem., Int. Ed. 2013, 52, 8592.
      (d) Candish, L.; Lupton, D. W. J. Am. Chem. Soc. 2013, 135, 58.
      (e) Yao, C.; Wang, D.; Lu, J.; Li, T.; Jiao, W.; Yu, C. Chem. Eur. J. 2012, 18, 1914.
      (f) Sun, F.-G.; Sun, L.-H.; Ye, S. Adv. Synth. Catal. 2011, 353, 3134.
      (g) Xie, Y.; Que, Y.; Li, T.; Zhu, L.; Yu, C.; Yao, C. Org. Biomol. Chem. 2015, 13, 1829.
      (h) Qiao, Y.; Wei, D.; Chang, J. J. Org. Chem. 2015, 80, 8619.

    9. [9]

      Yao, C.; Jiao, W.; Xiao, Z.; Liu, R.; Li, T.; Yu, C. Tetrahedron 2013, 69, 1133.  doi: 10.1016/j.tet.2012.11.052

    10. [10]

      (a) Newman, D. J.; Cragg, G. M. J. Nat. Prod. 2007, 70, 461.
      (b) Yan, F.; Liu, Y.; Wang, W. Tumor Biol. 2013, 34, 2135.
      (c) Wei, J.; Liu, M.; Liu, H.; Wang, H.; Wang, F.; Zhang, Y.; Han, L.; Lin, X. J. Appl. Toxicol. 2013, 33, 756.
      (d) Yeom, H.-S.; Li, H.; Tang, Y.; Hsung, R. P. Org. Lett. 2013, 15, 3130.

    11. [11]

      (a) Que, Y.; Li, T.; Yu, C.; Wang, X.-S.; Yao, C. J. Org. Chem. 2015, 80, 3289.
      (b) Que, Y.; Lu, Y.; Wang, W.; Wang, Y.; Wang, H.; Yu, C.; Li, T.; Wang, X.-S.; Shen, S.; Yao, C. Chem. Asian J. 2016, 11, 678.
      (c) Que, Y.; Xie, Y.; Li, T.; Yu, C.; Tu, S.; Yao, C. Org. Lett. 2015, 17, 6234.
      (d) Wang, Y.; Pan, J.; Dong, J.; Yu, C.; Li, T.; Wang, X.-S.; Shen, S.; Yao, C. J. Org. Chem. 2017, 82, 1790.
      (e) Yu, C.; Shen, S.; Jiang, L.; Li, J.; Lu, Y.; Li, T.; Yao, C. Org. Biomol. Chem. 2017, 15, 9149.
      (f) Hu, Y.; Pan, D.; Cong, L.; Yao, Y.; Yu, C.; Li, T.; Yao, C. ChemistrySelect 2018, 3, 1708.
      (g) Li, S.; Yao, Y.; Tang, Z.; Sun, B.; Yu, C.; Li, T.; Yao, C. Org. Biomol. Chem. 2019, 17, 268.

    12. [12]

      CCDC No. 1894520(3a). The crystallographic data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

    13. [13]

      (a) Samanta, R. C.; Maji, B.; De Sarkar, S.; Bergander, K.; Fröhlich, R.; Mück-Lichtenfeld, C.; Mayr, H.; Studer, A. Angew. Chem., Int. Ed. 2012, 51, 5234.
      (b) Domingo, L. R.; Sáez, J. A.; Arnó, M. Org. Biomol. Chem. 2014, 12, 895.
      (c) Aurell, M. J.; Domingo, L. R.; Arno, M.; Zaragoza, R. J. Org. Biomol. Chem. 2016, 14, 8338.
      (d) Wang, Y.; Wu, B.; Zheng, L.; Wei, D.; Tang, M. Org. Chem. Front. 2016, 3, 190.
      (e) Wang, Y.; Wei, D.; Wang, Y.; Zhang, W.; Tang, M. ACS Catal. 2016, 6, 279.
      (f) Wang, Y.; Wei, D.; Zhang, W. ChemCatChem 2018, 10, 338.
      (g) Wang, J.; Li, Y.; Sun, J.; Wang, H.; Jin, Z.; Chi, Y. R. ACS Catal. 2018, 8, 9859.
      (h) Mondal, S.; Yetra, S. R.; Mukherjee, S.; Biju, A. T. Acc. Chem. Res. 2019, 52, 425.

    14. [14]

      (a) Kowalski, C. J.; Weber, A. E.; Fields, K. W. J. Org. Chem. 1982, 47, 5088.
      (b) Dommaraju, Y.; Borthakur, S.; Rajesh, N.; Prajapati, D. RSC Adv. 2015, 5, 24327.

  • 加载中
    1. [1]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    2. [2]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    3. [3]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    4. [4]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    5. [5]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    6. [6]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    7. [7]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    8. [8]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    9. [9]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    10. [10]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    11. [11]

      Jiahao Lu Xin Ming Yingjun Liu Yuanyuan Hao Peijuan Zhang Songhan Shi Yi Mao Yue Yu Shengying Cai Zhen Xu Chao Gao . 基于稳态电热法的石墨烯膜导热系数的精确可靠测量. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-. doi: 10.1016/j.actphy.2025.100045

    12. [12]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    13. [13]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    14. [14]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    15. [15]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    16. [16]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    17. [17]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    18. [18]

      Jiamin Li Wenyue Zhong Kin Shing Chan . “烯”君入瓮又入学——据元素周期表与酸碱理论谈烯烃教学. University Chemistry, 2025, 40(6): 177-182. doi: 10.12461/PKU.DXHX202408040

    19. [19]

      Xinghai Liu Hongke Wu . Exploration and Practice of Ideological and Political Education in Heterocyclic Chemistry Based on "Fentanyl" Event. University Chemistry, 2024, 39(8): 359-364. doi: 10.3866/PKU.DXHX202312100

    20. [20]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

Metrics
  • PDF Downloads(15)
  • Abstract views(1053)
  • HTML views(143)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return