Citation: Liu Zhuyun, Xu Juanjuan, Ling Bin, Li Yanxiang, Liu Guangcong, Wang Lizhong, Zhou Guochun. Synthesis of Benzyl Phenol from Benzyl Aryl Ether by Polyphosphoric Acid-Catalyzed Benzyl Rearrangement[J]. Chinese Journal of Organic Chemistry, ;2019, 39(9): 2515-2524. doi: 10.6023/cjoc201901042 shu

Synthesis of Benzyl Phenol from Benzyl Aryl Ether by Polyphosphoric Acid-Catalyzed Benzyl Rearrangement

  • Corresponding author: Zhou Guochun, gczhou@njtech.edu.cn
  • Received Date: 26 January 2019
    Revised Date: 30 April 2019
    Available Online: 15 September 2019

    Fund Project: the Doctoral and Master's Fund of Taizhou Polytechnic College TZYBS-17-1the Research Project of Taizhou Polytechnic College TZYKY-18-28the Natural Science Research General Project of Jiangsu Higher Education Institutions 17KJB350012the Science and Technology Support Program of Taizhou TS201711the Excellent Young Backbone Teachers of "Blue Project" in Jiangsu Universities in 2018, the College Students' Innovation and Entrepreneurship Training Program in Jiangsu Province in 2018 201812106004YProject supported by the Natural Science Research General Project of Jiangsu Higher Education Institutions (Nos. 18KJD350002, 17KJB350012), the Excellent Young Backbone Teachers of "Blue Project" in Jiangsu Universities in 2018, the College Students' Innovation and Entrepreneurship Training Program in Jiangsu Province in 2018 (No. 201812106004Y), the Science and Technology Support Program of Taizhou (No. TS201711), the Doctoral and Master's Fund of Taizhou Polytechnic College (No. TZYBS-17-1) and the Research Project of Taizhou Polytechnic College (No. TZYKY-18-28)the Natural Science Research General Project of Jiangsu Higher Education Institutions 18KJD350002

Figures(1)

  • The rearrangement activity of benzyl aryl ether catalyzed by polyphosphoric acid (PPA) was systematically investigated. Optimal structural tuning of substitutions of electron withdrawing group (EWG) and electron donating group (EDG) at phenolic moiety or benzyl moiety benefits the rearrangement and the regio-selectivity of the rearrangement obeyed the substitution directing rule at the aromatic ring. This readily available rearrangement method is of practical interest for the benzylation of diverse aromatic phenols.
  • 加载中
    1. [1]

      Tyman, J. H. P. Synthetic and Natural Phenols, Elsevier, New York, 1996.

    2. [2]

      Representive examples:
      (a) Olah, G. A. Friedel-Crafts and Related Reactions, Wiley, New York, 1963.
      (b) Bandini, M.; Melloni, A.; Umani-Ronchi, A. Angew. Chem. Int. Ed. 2004, 43, 550.
      (c) Guo, X.-K.; Zhao, D.-Y.; Li, J.-H.; Zhang, X.-G.; Deng, C.-L.; Tang, R.-Y. Synlett 2012, 23, 627.

    3. [3]

      Representive examples:
      (a) Lapointe, D.; Fagnou, K. Org. Lett. 2009, 11, 4160.
      (b) Verrier, C.; Hoarau, C.; Marsais, F. Org. Biomol. Chem. 2009, 7, 647.
      (c) Ackermann, L.; Novák, P. Org. Lett. 2009, 11, 4966.
      (d) Choudary, B. M.; Mulukutla, R. S.; Klabunde, K. J. J. Am. Chem. Soc. 2003, 125, 2020.
      (e) Zhang, C. Y.; Gao, X. Q.; Zhang, J. H.; Peng, X. J. Chin. Chem. Lett. 2009, 20, 913.

    4. [4]

      Hartmann, C.; Gattermann, L. Ber. Dtsch. Chem. Ges. 1892, 25, 3531.  doi: 10.1002/cber.189202502230

    5. [5]

      Tarbell, D. S.; Petropoulos, J. C. J. Am. Chem. Soc. 1952, 74, 244.  doi: 10.1021/ja01121a064

    6. [6]

      (a) Luzzio, F. A.; Chen, J. J. Org. Chem. 2009, 74, 5629.
      (b) Kraus, G. A. Chaudhary, D. Tetrahedron Lett. 2012, 53, 7072.
      (c) Yoshimi, Y.; Maeda, H. Hatanaka, M.; Mizuno, K. Tetrahedron 2004, 60, 9425.
      (d) Sagrera, G.; Seoane, G. Synthesis 2009, 4190.

    7. [7]

      Schäfer; G.; Bode, J. W. Angew. Chem., Int. Ed. 2011, 50, 10913.  doi: 10.1002/anie.201105380

    8. [8]

      Champagne; P. A.; Benhassine, Y.; Desroches, J.; Paquin, J.-F. Angew. Chem., Int. Ed. 2014, 53, 13835.  doi: 10.1002/anie.201406088

    9. [9]

      Vuković, V. D.; Richmond, E.; Wolf, E.; Moran, J. Angew. Chem., Int. Ed. 2017, 56, 3085.  doi: 10.1002/anie.201612573

    10. [10]

      Bering, L.; Jeyakumar, K.; Antonchick, A. P. Org. Lett. 2018, 20, 3911.  doi: 10.1021/acs.orglett.8b01495

    11. [11]

      (a) Kuwano, R.; Kusano, H. Org. Lett. 2008, 10, 1979.
      (b) Zhou, L.; Wang, W.; Zuo, L.; Yao, S.; Wang, W.; Duan, W. Tetrahedron Lett. 2008, 49, 4876.

    12. [12]

      (a) Prokipcak, J. M.; Breckles, T. H. Can. J. Chem. 1971, 49, 914.
      (b) Moghaddam, F. M.; Hoor, A. A.; Dekamin, M. G. J. Sulfur Chem. 2004, 25, 125.
      (c) Leeson, P. D.; Emmett, J. C.; Underwood, A. H.; Ellis, D. EP 188351, 1986.

    13. [13]

      (a) Niu, J.; Zhou, H.; Li, Z.; Xu, J.; Hu, S. J. Org. Chem. 2008, 73, 7814.
      (b) Bhure, M. H.; Rode, C. V.; Chikate, R. C.; Patwardhan, N.; Patil, S. Catal. Commun. 2007, 8, 139.

    14. [14]

      (a) Dai, H.-L.; Liu, W.-Q.; Xu, H.; Yang, L.-M.; Lv, M.; Zheng, Y. T. Chem. Pharm. Bull. 2009, 57, 84.
      (b) Bartoli, G.; Dalpozzo, R.; Nino, A. D.; Maiuolo, L.; Nardi, M.; Procopio, A.; Tagarelli, A. Eur. J. Org. Chem. 2004, 39, 2176.

    15. [15]

      (a) Ohkubo, M.; Mochizuki, S.; Sano, T.; Kawaguchi, Y.; Okamoto, S. Org. Lett. 2007, 9, 773.
      (b) Sajiki, H.; Hirota, K. Chem. Pharm. Bull. 2003, 51, 320.
      (c) Paula, S.; Abell, J.; Deye, J.; Elam, C.; Lape, M.; Purnell, J. Ratliff, R.; Sebastian, K.; Zultowsky, J.; Kempton, R. J. Bioorg. Med. Chem. 2009, 17, 6613.

    16. [16]

      Chakraborti, A. K.; Chankeshwara, S. V. J. Org. Chem. 2009, 74, 1367.  doi: 10.1021/jo801659g

    17. [17]

      Spurg, A.; Waldvogel, S. R. Eur. J. Org. Chem. 2008, 2, 337.

    18. [18]

      (a) Venkataramanan, B.; James, W. L. G.; Vittal, J. J.; Suresh, V. Cryst. Growth Des. 2004, 4, 553.
      (b) Marx, J. N.; Argyle, J. C.; Norman, L. R. J. Am. Chem. Soc. 1974, 96, 2121.
      (c) Baggaley, K. H.; Fears, R.; Hindley, R. H.; Morgan, B.; Murrell, E.; Thorne, D. E. J. Med. Chem. 1977, 20, 1388.

    19. [19]

      (a) Zhang, G.; Ren, X.; Chen, J.; Hu, M.; Cheng, J. Org. Lett. 2011, 13, 5004.
      (b) Tao, C. Z.; Liu, W. W.; Sun, J. Y. Chin. Chem. Lett. 2009, 20, 1170.

    20. [20]

      Li, Y.; Chen, T.; Wang, H.; Zhang, R.; Jin, K.; Wang, X.; Duan, C. Synlett 2011, 1713.

    21. [21]

      Kern, N.; Dombray, T.; Blanc, A.; Weibel, J.-M.; Pale, P. J. Org. Chem. 2012, 77, 9227.  doi: 10.1021/jo301787v

    22. [22]

      (a) Larsson, J. P. WO 02/09257, 2002.
      (b) Robinson, R.; Smith, J. C. J. Chem. Soc. 1926, 392.

    23. [23]

      (a) Ploypradith, P.; Cheryklin, P.; Niyomtham, N.; Bertoni, D. R.; Ruchirawat, S. Org. Lett. 2007, 9, 2637.
      (b) Petchmanee, T.; Ploypradith, P.; Ruchirawat, S. J. Org. Chem. 2006, 71, 2892.

    24. [24]

      (a) Boger, D. L.; Coleman, R. S. J. Org. Chem. 1986, 51, 5436.
      (b) Kissau, L.; Stahl, P.; Mazitschek, R.; Giannis, A.; Waldmann, H. J. Med. Chem. 2003, 46, 2917.
      (c) Hermite, N. L'; Giraud, A.; Provot, O.; Peyrat, J.-F.; Alami, M.; Brion, J.-D. Tetrahedron 2006, 62, 11994.

    25. [25]

      (a) Ramachary, D. R.; Kishor, M. J. Org. Chem. 2007, 72, 5056.
      (b) Minami, N.; Kijima, S. Chem. Pharm. Bull. 1979, 27, 1490.

    26. [26]

      (a) Gowrisankar, S.; Sergeev, A. G.; Anbarasan, P.; Spannenberg, A.; Neumann, H.; Beller, M. J. Am. Chem. Soc. 2010, 132, 11592.
      (b) Saito, K.; Onizawa, Y.; Kusama, H.; Iwasawa, N. Chem. Eur. J. 2010, 16, 4716.
      (c) Huston, R. C.; Swartout, A. A.; Wardwell, G. K. J. Am. Chem. Soc. 1930, 52, 4484.

    27. [27]

      Batt Maynard, D. G.; Petraitis, J. J.; Shaw, J. E.; Galbraith, W.; Harris, R. R. J. Med. Chem. 1990, 33, 360.  doi: 10.1021/jm00163a058

    28. [28]

      (a) Sano, M.; Iwakura, K. JP 02196686, 1990.
      (b) Batt, D. G.; Jones, D. G.; Greca, S. L. J. Org. Chem. 1991, 56, 6704.

    29. [29]

      (a) Kim, J. D.; Han, G.; Zee, O. P.; Jung, Y. H. Tetrahedron Lett. 2003, 44, 733.
      (b) Paul, N. K.; Dietrich, L.; Jha, A. Synth. Commun. 2007, 37, 877.

    30. [30]

      (a) Trivedi, R.; Tunge, J. A. Org Lett. 2009, 11, 5650.
      (b) Punna, S.; Meunier, S.; Finn, M. G. Org. Lett. 2004, 6, 2777.

    31. [31]

      Orrests, J.; Tucker, S. H.; Whalley, M. J. Chem. Soc. 1951, 303.

    32. [32]

      Kesharwani, T.; Larock, R. C. Tetrahedron 2008, 64, 6090.  doi: 10.1016/j.tet.2008.01.144

    33. [33]

      (a) Anderson, K. W.; Ikawa, T.; Tundel, R. E.; Buchwald, S. L. J. Am. Chem. Soc. 2006, 128, 10694.
      (b) Haldar, S.; Koner, S. J. Org. Chem. 2010, 75, 6005.

    34. [34]

      (a) Mincione, E.; Bovicelli, P. Gazz. Chim. Ital. 1982, 112, 437.
      (b) Yusupov, Y.; Abdurasuleva, A. R.; Rezhametov, T.; Mama- dzhanov, A. Uzb. Khim. Zh. 1980, 26.

  • 加载中
    1. [1]

      Jinge ZhuAiling TangLeyi TangPeiqing CongChao LiQing GuoZongtao WangXiaoru XuJiang WuErjun Zhou . Chlorination of benzyl group on the terminal unit of A2-A1-D-A1-A2 type nonfullerene acceptor for high-voltage organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110233-. doi: 10.1016/j.cclet.2024.110233

    2. [2]

      Jian SongShenghui WangQiuge LiuXiao WangShuo YuanHongmin LiuSaiyang ZhangN-Benzyl arylamide derivatives as novel and potent tubulin polymerization inhibitors against gastric cancers: Design, structure–activity relationships and biological evaluations. Chinese Chemical Letters, 2025, 36(2): 109678-. doi: 10.1016/j.cclet.2024.109678

    3. [3]

      Haixian RenYuting DuXiaojing YangFangjun HuoLe ZhangCaixia Yin . Development of ESIPT-based specific fluorescent probes for bioactive species based on the protection-deprotection of the hydroxyl. Chinese Chemical Letters, 2025, 36(2): 109867-. doi: 10.1016/j.cclet.2024.109867

    4. [4]

      Ying-Di HaoZhi-Qian LinXiao-Yu GuoJiao LiangCan-Kun LuoQian-Tao WangLi GuoYong Wu . Rhodium-catalyzed Doyle-Kirmse rearrangement reactions of sulfoxoniun ylides. Chinese Chemical Letters, 2024, 35(4): 108834-. doi: 10.1016/j.cclet.2023.108834

    5. [5]

      Wenling YuanFengli LiZhe ChenQiaoxin XuZhenhua GuanNanyu YaoZhengxi HuJunjun LiuYuan ZhouYing YeYonghui Zhang . AbnI: An α-ketoglutarate-dependent dioxygenase involved in brassicicene CH functionalization and ring system rearrangement. Chinese Chemical Letters, 2024, 35(5): 108788-. doi: 10.1016/j.cclet.2023.108788

    6. [6]

      Wenyu GaoLiming ZhangChuang ZhaoLixiang LiuXingran YangJinbo Zhao . Controlled semi-Pinacol rearrangement on a strained ring: Efficient access to multi-substituted cyclopropanes by group migration strategy. Chinese Chemical Letters, 2024, 35(9): 109447-. doi: 10.1016/j.cclet.2023.109447

    7. [7]

      Ruru LiQian LiuHui LiFengbin SunZhurui Shen . Rational design of dual sites induced local electron rearrangement for enhanced photocatalytic oxygen activation. Chinese Chemical Letters, 2024, 35(11): 109679-. doi: 10.1016/j.cclet.2024.109679

    8. [8]

      Huashan HuangJingze ChenLuyun ZhangHong YanSiqi LiFen-Er Chen . Oscillatory flow reactor facilitates fast photochemical Wolff rearrangement toward synthesis of α-substituted amides in flow. Chinese Chemical Letters, 2025, 36(2): 109992-. doi: 10.1016/j.cclet.2024.109992

    9. [9]

      Zhen ZhangXue-ling ChenXiu-Mei XieTian-Yu GaoJing QinJun-Jie LiChao FengDa-Gang Yu . Iron-promoted carbonylation–rearrangement of α-aminoaryl-tethered alkylidenecyclopropanes with CO2: Facile synthesis of quinolinofurans. Chinese Chemical Letters, 2025, 36(4): 110056-. doi: 10.1016/j.cclet.2024.110056

    10. [10]

      Jiajun LuZhehui LiaoTongxiang CaoShifa Zhu . Synergistic Brønsted/Lewis acid catalyzed atroposelective synthesis of aryl-β-naphthol. Chinese Chemical Letters, 2025, 36(1): 109842-. doi: 10.1016/j.cclet.2024.109842

    11. [11]

      Shuang LiJiayu SunGuocheng LiuShuo ZhangZhong ZhangXiuli Wang . A new Keggin-type polyoxometallate-based bifunctional catalyst for trace detection and pH-universal photodegradation of phenol. Chinese Chemical Letters, 2024, 35(8): 109148-. doi: 10.1016/j.cclet.2023.109148

    12. [12]

      Guanyang Zeng Xingqiang Liu Liangqiao Wu Zijie Meng Debin Zeng Changlin Yu . Novel visible-light-driven I- doped Bi2O2CO3 nano-sheets fabricated via an ion exchange route for dye and phenol removal. Chinese Journal of Structural Chemistry, 2024, 43(12): 100462-100462. doi: 10.1016/j.cjsc.2024.100462

    13. [13]

      Xiao ZhuYanbing MoJiawei ChenGaopan LiuYonggang WangXiaoli Dong . A weakly-solvated ether-based electrolyte for fast-charging graphite anode. Chinese Chemical Letters, 2024, 35(8): 109146-. doi: 10.1016/j.cclet.2023.109146

    14. [14]

      Lei ShenYang ZhangLinlin ZhangChuanwang LiuZhixian MaKangjiang LiangChengfeng Xia . Phenylhydrazone anions excitation for the photochemical carbonylation of aryl iodides with aldehydes. Chinese Chemical Letters, 2024, 35(4): 108742-. doi: 10.1016/j.cclet.2023.108742

    15. [15]

      Xiao-Bo LiuRen-Ming LiuXiao-Di BaoHua-Jian XuQi ZhangYu-Feng Liang . Nickel-catalyzed reductive formylation of aryl halides via formyl radical. Chinese Chemical Letters, 2024, 35(12): 109783-. doi: 10.1016/j.cclet.2024.109783

    16. [16]

      Tian-Yu GaoXiao-Yan MoShu-Rong ZhangYuan-Xu JiangShu-Ping LuoJian-Heng YeDa-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364

    17. [17]

      Junxin LiChao ChenYuzhen DongJian LvJun-Mei PengYuan-Ye JiangDaoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732

    18. [18]

      Pengfei ZhangQingxue MaZhiwei JiangXiaohua XuZhong Jin . Transition-metal-catalyzed remote meta-C—H alkylation and alkynylation of aryl sulfonic acids enabled by an indolyl template. Chinese Chemical Letters, 2024, 35(8): 109361-. doi: 10.1016/j.cclet.2023.109361

    19. [19]

      Jianhui YinWenjing HuangChangyong GuoChao LiuFei GaoHonggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244

    20. [20]

      Mengxing LiuJing LiuHongxing ZhangJianan TaoPeiwen FanXin LvWei Guo . One-pot accessing of meso–aryl heptamethine indocyanine NIR fluorophores and potential application in developing dye-antibody conjugate for imaging tumor. Chinese Chemical Letters, 2025, 36(4): 109994-. doi: 10.1016/j.cclet.2024.109994

Metrics
  • PDF Downloads(12)
  • Abstract views(1022)
  • HTML views(66)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return