Citation: Ma Rong, Song Gege, Xi Qiuzhen, Yang Liu, Li Er-Qing, Duan Zheng. Phosphine-Catalyzed[3+2] Annulations with γ-Methyl Allenoates[J]. Chinese Journal of Organic Chemistry, ;2019, 39(8): 2196-2202. doi: 10.6023/cjoc201901040 shu

Phosphine-Catalyzed[3+2] Annulations with γ-Methyl Allenoates

  • Corresponding author: Li Er-Qing, lierqing@zzu.edu.cn Duan Zheng, duanzheng@zzu.edu.cn
  • Received Date: 25 January 2019
    Revised Date: 22 March 2019
    Available Online: 9 August 2019

    Fund Project: the National Natural Science Foundation of China 21272218the National Natural Science Foundation of China 21702189the China Postdoctoral Science Foundation 2018T110737the Postdoctoral Research Grant in Henan Province 001701006Project supported by the National Natural Science Foundation of China (Nos. 21702189, 21672193, 21272218), the China Postdoctoral Science Foundation (Nos. 2017M610458, 2018T110737) and the Postdoctoral Research Grant in Henan Province (No. 001701006)the National Natural Science Foundation of China 21672193the China Postdoctoral Science Foundation 2017M610458

Figures(2)

  • The phosphine-catalyzed[3+2] annulation of γ-methyl allenoates with 2-arylidene-1H-indene-1, 3(2H)-diones is reported. In the reaction, a series of highly functionalized spiro[4.4]dec-6-ene skeletons were obtained in moderate to good yields and high diastereoselectivities. It should be noted that the perfect α-regioselective annulation adducts were obtained with simple PPh3 catalyst.
  • 加载中
    1. [1]

      (a) Tan, B.; Candeias, N. R.; Barbas Ⅲ, C. F. Nat. Chem. 2011, 3, 473.
      (b) Tan, B.; Candeias, N. R.; Barbas Ⅲ, C. F. J. Am. Chem. Soc. 2011, 133, 4672.
      (c) Tan, B.; Hernandez-Torres, G.; Barbas Ⅲ, C. F. J. Am. Chem. Soc. 2011, 133, 12354.
      (d) Cao, Y.; Jiang, X.; Liu, L.; Shen, F.; Zhang, F.; Wang, R. Angew. Chem., Int. Ed. 2011, 50, 9124.
      (e) Zhong, F.; Han, X.; Wang, Y.; Lu, Y. Angew. Chem., Int. Ed. 2011, 50, 7837.
      (f) Bencivenni, G.; Wu, L.-Y.; Mazzanti, A.; Giannichi, B.; Pesciaioli, F.; Song, M.-P.; Bartoli, G.; Melchiorre, P. Angew. Chem., Int. Ed. 2009, 48, 7200.

    2. [2]

      (a) Hojo, D.; Noguchi, K.; Tanaka, K. Angew. Chem., Int. Ed. 2009, 48, 8129.
      (b) Tanaka, K.; Otake, Y.; Sagae, H.; Noguchi, K.; Hirano, M. Angew. Chem., Int. Ed. 2008, 47, 1312.
      (c) Trost, B. M.; Cramer, N.; Silverman, S. M. J. Am. Chem. Soc. 2007, 129, 12396.

    3. [3]

      (a) Zhang, C.; Lu, X. J. Org. Chem. 1995, 60, 2906.
      (b) Lu, Z.; Zheng, S.; Zhang, X.; Lu, X. Org. Lett. 2008, 10, 3267.
      (c) Zhang, B.; He, Z.; Xu, S.; Wu, G.; He, Z. Tetrahedron 2008, 64, 9471.
      (d) Tian, J.; He, Z. Chem. Commun. 2013, 49, 2058.

    4. [4]

    5. [5]

      (a) Zhu, X.-F.; Lan, J.; Kwon, O. J. Am. Chem. Soc. 2003, 125, 4716.
      (b) Tran, Y. S.; Kwon, O. J. Am. Chem. Soc. 2007, 129, 12632.
      (c) Chen, R.; Fan, X.; Xu, Z.; He, Z. Chin. J. Chem. 2017, 35, 1469.

    6. [6]

      Zhang, Q.; Yang, L.; Tong, X. J. Am. Chem. Soc. 2010, 132, 2550.  doi: 10.1021/ja100432m

    7. [7]

      (a) Xu, S.; Zhou, L.; Ma, R.; Song, H.; He, Z. Chem.-Eur. J. 2009, 15, 8698.
      (b) Meng, X.; Huang, Y.; Zhao, H.; Xie, P.; Ma, J.; Chen, R. Org. Lett. 2009, 11, 991.
      (c) Zhao, H.; Meng, X.; Huang, Y. Chem. Commun. 2013, 49, 10513.
      (d) Li, E.; Jia, P.; Liang, L.; Huang, Y. ACS Catal. 2014, 4, 600.
      (e) Li, E.; Chang, M.; Liang, L.; Huang, Y. Eur. J. Org. Chem. 2015, 710.
      (f) Li, E.; Jin, H.; Huang, Y. ChemistrySelect 2018, 3, 12007.

    8. [8]

      Zhang, X.-C.; Cao, S.-H.; Wei, Y.; Shi, M. Chem. Commun. 2011, 47, 1548.  doi: 10.1039/C0CC04289G

    9. [9]

      Gomez, C.; Gicquel, M.; Carry, J.-C.; Schio, L.; Retailleau, P.; Voituriez, A.; Marinetti, A. J. Org. Chem. 2013, 78, 1488.  doi: 10.1021/jo302460d

    10. [10]

      Li, E.; Huang, Y.; Liang, L.; Xie, P. Org. Lett. 2013, 15, 3138.  doi: 10.1021/ol401249e

    11. [11]

      CCDC 1579810 (3e) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.

    12. [12]

      (a) Liang, Y.; Liu, S.; Xia, Y.; Li, Y.; Yu, Z.-X. Chem.-Eur. J. 2008, 14, 4361.
      (b) Mercier, E.; Fonovic, B.; Henry, C.; Kwon, O.; Dudding, T. Tetrahedron Lett. 2007, 48, 3617.
      (c) Xia, Y.; Liang, Y.; Chen, Y.; Wang, M.; Jiao, L.; Huang, F.; Liu, S.; Li, Y.; Yu, Z.-X. J. Am. Chem. Soc. 2007, 129, 3470.
      (d) Dudding, T.; Kwon, O.; Mercier, E. Org. Lett. 2006, 8, 3643.
      (e) Zhu, X.-F.; Henry, C. E.; Kwon, O. J. Am. Chem. Soc. 2007, 129, 6722.

    13. [13]

      Goswami, P.; Das, B. Tetrahedron Lett. 2009, 50, 897.  doi: 10.1016/j.tetlet.2008.12.036

    14. [14]

      Lang, R. W.; Hansen, H.-J. Org. Synth. 1990, 62, 202.

  • 加载中
    1. [1]

      Junyuan Zhang Zhiwei Miao . 有机磷杀虫剂的前世今生. University Chemistry, 2025, 40(6): 129-138. doi: 10.12461/PKU.DXHX202408118

    2. [2]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    3. [3]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    4. [4]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    5. [5]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    6. [6]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    7. [7]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    8. [8]

      Shuai Yuan Yaofeng Yuan . Academician Chengye Yuan and Organic Phosphorus Chemistry. University Chemistry, 2025, 40(7): 393-400. doi: 10.12461/PKU.DXHX202409123

    9. [9]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    10. [10]

      Yan Qi Yueqin Yu Weisi Guo Yongjun Liu . 过渡金属参与的有机反应案例教学与实践探索. University Chemistry, 2025, 40(6): 111-117. doi: 10.12461/PKU.DXHX202411021

    11. [11]

      Jiaojiao Yu Bo Sun Na Li Cong Wen Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177

    12. [12]

      Aiyi Xin Jiawei Li Xinyang Ran Chuanjiang Fu Zhiguo Wang . Collaborative Science and Education Based Experimental Design in Organic Chemistry: A Case Study of the Nucleophilic Substitution Reaction of 2-Hydroxymethyl-4,6-Di-Tert-Butylphenol. University Chemistry, 2025, 40(5): 366-375. doi: 10.12461/PKU.DXHX202407031

    13. [13]

      Yukun Chang Haoqin Huang Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095

    14. [14]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    15. [15]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    16. [16]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    17. [17]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    18. [18]

      Xudong Liu Huili Fan Junping Xiao Min Yang Yan Li . Teaching Approaches to the AE + AN Mechanism of Electrophilic Addition Reactions between Olefins and Inorganic Acids in Organic Chemistry. University Chemistry, 2025, 40(7): 367-372. doi: 10.12461/PKU.DXHX202409041

    19. [19]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    20. [20]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

Metrics
  • PDF Downloads(8)
  • Abstract views(1170)
  • HTML views(111)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return