Citation: Zhou Guangwei, Zhang Lizhu, Xue Yahan, Li Jiarong. Progress of N-Benzyl Removal[J]. Chinese Journal of Organic Chemistry, ;2019, 39(9): 2428-2442. doi: 10.6023/cjoc201901031 shu

Progress of N-Benzyl Removal

  • Corresponding author: Li Jiarong, jrli@bit.edu.cn
  • Received Date: 21 January 2019
    Revised Date: 13 March 2019
    Available Online: 16 September 2019

    Fund Project: Project supported by the 086 Special Fund

Figures(16)

  • N-Benzyl is a common protecting group for organic amines, owing to its convenient and efficient removal. It plays an important role in organic synthesis, especially in the research of drugs and natural products. In recent years, a large number of researchers have conducted extensive studies on N-benzyl deprotection, but the related work is scattered and lacks systematic review. Therefore, the progress of N-benzyl removal is systematically and comprehensively summarized from the aspects of reductive, oxidative and acid-base debenzylation.
  • 加载中
    1. [1]

      Rong, G.-B. Protective Groups in Organic Synthesis, East China University of Science and Technology Press, Shanghai, 2004, pp.494~654(in Chinese).

    2. [2]

      Huang, P.-Q.; Jin, L.-R.; Chen, A.-Q. Organic Synthesis, Higher Education Press, Beijing, 2006, pp.385~389(in Chinese).

    3. [3]

      Wu, Y.-L.; Yao, Z.-J.; Hu, T.-S. Modern Organic Synthetic Chemistry, Science Press, Beijing, 2006, pp.27~73(in Chinese).

    4. [4]

      Wu, Q.-P.; Li, S.-M. Protective Chemistry, Chemical Industry Press, Beijing, 2007, pp.239~277(in Chinese).

    5. [5]

      Mackie, R.K.; Smith, D.M.; Aitken, R.A.; Meng, G. Guidebook to Organic Synthesis, Chemical Industry Press, Beijing, 2009, pp.210~223(in Chinese).

    6. [6]

      Dong, Y.-S.; Dai, S.-A.; Pan, Z.-F.; Chen, J.-L. Ind.Catal. 2011, 19, 4(in Chinese).  doi: 10.3969/j.issn.1008-1143.2011.04.002

    7. [7]

      Bayat, Y.; Ebrahimi, H.; Fotouhi, F.F. Org. Process Res. Dev.2012, 16, 1733.  doi: 10.1021/op300162d

    8. [8]

      Jia, H.-P.; Ou, Y.-X.; Chen, B.-R.; Xu, Y.-J.; Chen, J.-T. Chin. J. Energ. Mater.1998, 6(4), 145(in Chinese).
       

    9. [9]

      Qiu, W.-G.; Yu, Y.-Z. Chin.J.Synth.Chem. 1998, 6, 34(in Chinese).

    10. [10]

      Davies, S.G.; Ichihara, O. Tetrahedron Lett.1999, 40, 9313.  doi: 10.1016/S0040-4039(99)01954-1

    11. [11]

      Couturier, M.; Andresen, B.M.; Jorgensen, J.B.; Tucker, J.L.; Busch, F.R.; Brenek, S.J.; Dube, P.; Ende, D.J.; Negri, J.T.P. Org. Process Res. Dev.2002, 6, 42.  doi: 10.1021/op0102161

    12. [12]

      Amat, M.; Llor, N.; Hidalgo, J.; Escolano, C.; Bosch, J. J. Org. Chem.2003, 68, 1919.  doi: 10.1021/jo0266083

    13. [13]

      Davies, S.G.; Nicholson, R.L.; Price, P.D.; Roberts, P.M.; Rueesell, E.D.; Savory, E.D.; Smith, A.D.; Thomson, J.E. Synlett 2004, 901.

    14. [14]

      Srimurugan, S.; Murugan, K.; Chen, C. Chem. Pharm. Bull.2009, 57, 1421.  doi: 10.1248/cpb.57.1421

    15. [15]

      Davies, S.G.; Fletcher, A.M.; Hughes, D.G.; Lee, J.A.; Price, P.D.; Roberts, P.M.; Russell, A.J.; Smith, A.D.; Thomson, J.E.; Williams, O.M.H. Tetrahedron 2011, 67, 9975.  doi: 10.1016/j.tet.2011.09.038

    16. [16]

      Leitch, D.C.; Greene, T.F.; O'Keeffe, R.; Lovelace, T.C.; Powers, J.D.; Searle, A.D. Org. Process Res. Dev.2017, 21, 1806.  doi: 10.1021/acs.oprd.7b00261

    17. [17]

      Yoshida, K.; Nakajima, S.; Wakamatsu, T.; Ban, Y. Heterocycles 1988, 27, 1167.  doi: 10.3987/COM-88-4525

    18. [18]

      Gong, X.-B.; Sun, C.-H.; Pang, S.-P.; Zhang, J.; Li, Y.-C.; Zhao, X.-Q. Chin. J. Org. Chem.2012, 32, 486(in Chinese).
       

    19. [19]

      Bellamy A.J. Tetrahedron 1995, 51, 4711.

    20. [20]

      Wardle, R.B.; Edwards, W.W. WO 97/20785, 1997.

    21. [21]

      Koskin, A.P.; Simakova, I.L.; Parmon, V.N. Russ. Chem. Bull.2007, 56, 2370.  doi: 10.1007/s11172-007-0377-5

    22. [22]

      Kalashnikov, A.I.; Sysolyatin, S.V.; Sakovich, G.V.; Surmacheva, I.A.; Surmachev, V.N.; Lapinab, Y.T. Russ. Chem. Bull.2009, 58, 2164.  doi: 10.1007/s11172-009-0295-9

    23. [23]

      Fotouhi-Far, F.; Bashiri, H.; Hamadanian, M. Propellants Explos., Pyrotech.2017, 42, 213.  doi: 10.1002/prep.201600035

    24. [24]

      Fotouhi-Far, F.; Bashiri, H.; Hamadanian, M.; Keshavarz, M.H. Inorg. Nano-Met. Chem.2017, 47, 1489.  doi: 10.1080/24701556.2017.1357593

    25. [25]

      Ji, H.-T.; Jing, Q.; Huang, J.-W.; Silverman, R.B. Tetrahedron 2012, 68, 1359.  doi: 10.1016/j.tet.2011.12.013

    26. [26]

      Zhu, S.-L.; Zhu, J.; Zhang, W.-P.; Cheng, C.; Shi, H.-J. Chin.J.Synth.Chem. 2014, 22, 664(in Chinese).  doi: 10.3969/j.issn.1005-1511.2014.05.022

    27. [27]

      Hou, T.-J.; Zhang, J.; Wang, C.-J.; Luo, J. Org. Chem. Front.2017, 4, 1819.  doi: 10.1039/C7QO00357A

    28. [28]

      Bailey, P.D.; Beard, M.A.; Dang, H.P.T.; Phillips, T.R.; Price, R.A.; Whittaker, J.H. Tetrahedron Lett.2008, 49, 2150.  doi: 10.1016/j.tetlet.2008.01.104

    29. [29]

      Cheng, C.-J.; Sun, J.-W.; Xing, L.-X.; Xu, J.-M.; Wang, X.-Y.; Hu, Y.-F. J. Org. Chem.2009, 74, 5671.  doi: 10.1021/jo9007282

    30. [30]

      Quast, H.; Walter, S.J.; Mueller, B. Heterocycles 2012, 85, 2449.  doi: 10.3987/COM-12-12543

    31. [31]

      Gao, J.-H. M.S.Thesis, Zhejiang University of Technology, Hangzhou, 2012(in Chinese).

    32. [32]

      Zhang, M.-G.; Ma, Y.-Q.; Xia, Z.-J.; Chen, Z.-X. Chin. J. Pharm.2014, 45, 404(in Chinese).
       

    33. [33]

      Lu, D.-Q.; Wang, W.-B.; Ling, X.-Q.; Xie, J.; Shen, D. Mod. Chem. Ind.2014, 34, 33(in Chinese).  doi: 10.3969/j.issn.0253-4320.2014.02.008

    34. [34]

      Yu, L.-D.; Xu, Q.-X.; Wang, X. J. Jiangxi Norm. Univ.(Nat. Sci. Ed.)2017, 45, 507(in Chinese).
       

    35. [35]

      Désogère, P.; Rousselin, Y.; Poty, S.; Bernhard, C.; Goze, C.; Boschetti, F.; Denat, F. Eur. J. Org. Chem.2014, 35, 7831.

    36. [36]

      Torres, E.; Leiva, R.; Gazzarrini, S.; Carrizo, M.R.; Vivas, M.F.; Moroni, A.; Naesens, L.; Vázquez, S. ACS Med. Chem. Lett.2014, 5, 831.  doi: 10.1021/ml500108s

    37. [37]

      Li, Y.; Manickam, G.; Ghoshal, A.; Subramaniam, P. Synth. Commun.2006, 36, 925.  doi: 10.1080/00397910500466199

    38. [38]

      Lou, D.-Y.; Wang, H.-S.; Liu, S.; Li, L.; Zhao, W.; Chen, X.-H.; Wang, J.-L.; Li, X.-Q.; Wu, P.-F.; Yang, J. Catal. Commun.2018, 109, 29.

    39. [39]

      Shu, C.; Zheng, C.-Z.; Wang, R.-J.; Zhang, J.-Y. Chemistry 2004, 67(in Chinese).
       

    40. [40]

      Elamin, B.; Anantharamaiah, G.M.; Royer, G.P.; Means, G.E. J. Org. Chem.1979, 44, 3442.  doi: 10.1021/jo01333a048

    41. [41]

      Ram, S.; Spicer, L.D. Tetrahedron Lett.1987, 28, 515.  doi: 10.1016/S0040-4039(00)95769-1

    42. [42]

      Anwer, M.K.; Spatola, A.F. Tetrahedron Lett.1981, 22, 4369.  doi: 10.1016/S0040-4039(01)82959-2

    43. [43]

      Anwer, M.K.; Spatola, A.F.; Bossinger, C.D.; Flanigan, E.; Liu, R.-C.; Olsen, D.B.; Stevenson, D. J. Org. Chem.1983, 48, 3503.  doi: 10.1021/jo00168a025

    44. [44]

      Adger, B.M.; O'Farrell, C.; Lewis, N.J.; Mitchell, M.B. Synthesis 1987, 53.  doi: 10.1002/chin.198722132

    45. [45]

      Khan, S.A.; Sivanandaiah, K.M. Synthesis 1978, 750.  doi: 10.1055/s-1978-24877

    46. [46]

      Felix, A.M.; Heimer, E.P.; Lambros, T.J.; Tzougraki, C.; Meienhofer, J. J. Org. Chem.1978, 43, 21, 4194.

    47. [47]

      Gray, B.D.; Jeffs, P.W. J. Chem. Soc., Chem. Commun.1987, 18, 1329.  doi: 10.1039/C39870001329

    48. [48]

      Zheng, Y.; Wu, G.; Zhu, X.R.; Li, Y.-J.; Ma, Y.-H.; Zhao, X.; Lu, T.; Zhu, Y.-Q. Chem. Res. Chin.Univ. 2011, 27, 224.

    49. [49]

      Chen, S.-P.; Liu, D.-Q.; Si, L.-L.; Chen, L.-G.; Yan, X.-L. Synth. Commun.2017, 47, 3, 238.

    50. [50]

      Guo, M.-L.; Hong, K.-H.; Lv, Y.-F.; Ding, Y.; Li, C.-C.; Xu, H.; Qi, W.-X.; Chen, J.-Q.; Ji, M.; Cai, J. J. Chem. Res.2017, 2, 112.

    51. [51]

      Bajwa, J.S.; Slade, J.; Repic, O. Tetrahedron Lett.2000, 41, 6025.  doi: 10.1016/S0040-4039(00)01013-3

    52. [52]

      Babu, S.N.N.; Srinivasa, G.R.; Santhosh, D.C.; Gowda, D.C. J. Chem. Res.2004, 66.  doi: 10.3184/030823404323000846

    53. [53]

      Babu, S.N.N.; Srinivasa, G.R.; Santhosh, D.C.; Gowda, D.C. Synth. Commun.2004, 34, 1831.  doi: 10.1081/SCC-120034165

    54. [54]

      Kim, S.S.; Lin, G.; Yang, J.W. Bull. Korean Chem. Soc.2004, 25, 249.  doi: 10.5012/bkcs.2004.25.2.249

    55. [55]

      Davies, S.G.; Mortimer, D.A.B.; Mulvaney, A.W.; Russell, A.J.; Skarphedinsson, H.; Smith, A.D.; Vickers, R.J. Org. Biomol. Chem.2008, 6, 1625.  doi: 10.1039/b802204f

    56. [56]

      Hungerhoff, B.; Samanta, S.S.; Roels, J.; Metz, P. Synlett 2000, 77.  doi: 10.1002/chin.200017064

    57. [57]

      Oikawa, Y.; Yoshioka, T.; Yonemitsu, O. Tetrahedron Lett.1982, 23, 885.  doi: 10.1016/S0040-4039(00)86974-9

    58. [58]

      Oikawa, Y.; Yoshioka, T.; Yonemitsu, O. Tetrahedron Lett.1982, 23, 889.  doi: 10.1016/S0040-4039(00)86975-0

    59. [59]

      Singh, S.B. Tetrahedron Lett.1995, 36, 2009.  doi: 10.1016/0040-4039(95)00214-W

    60. [60]

      Yamaura, M.; Suzuki, T.; Hashimoto, H.; Yoshimura, J.; Okamoto, T.; Shin, C.M. Bull. Chem. Soc. Jpn.1985, 58, 1413.  doi: 10.1246/bcsj.58.1413

    61. [61]

      Davies, S.G.; Ichihara, O. Tetrahedron Lett.1998, 39, 6045.  doi: 10.1016/S0040-4039(98)01193-9

    62. [62]

      Bull, S.D.; Davies, S.G.; Fenton, G.; Mulvaney, A.W.; Prasad, R.S.; Smith, A.D. Chem. Commun.2000, 337.  doi: 10.1002/chin.200113073

    63. [63]

      Bull, S.D.; Davies, S.G.; Fenton, G; Mulvaney, A.W.; Prasad, R.S.; Smith, A.D. J. Chem. Soc., Perkin Trans. 1 2000, 3765.  doi: 10.1002/chin.200113073

    64. [64]

      Chen, S.-S.; Qiu, W.-G.; Yu, Y.-Z. Chin.J.Explos.Propellants 2000, 2, 4(in Chinese).

    65. [65]

      Qiu, W.-G.; Chen, S.-S; Yu, Y.-Z. Chin. J. Chem.1999, 17, 554.

    66. [66]

      Gigg, R.; Conant, R. J. Chem. Soc. Chem. Commun.1983, 465.

    67. [67]

      Haddach, A.A.; Kelleman, A.; Deaton-Rewolinski, M.V. Tetrahedron Lett.2002, 43, 399.  doi: 10.1016/S0040-4039(01)02192-X

    68. [68]

      Kong, W.; Fu, C.; Ma, S. Chem.-Eur. J.2011, 17, 13134.  doi: 10.1002/chem.201102251

    69. [69]

      Semak, V.; Escolano, C.; Arroniz, C. Tetrahedron:Asymmetry 2010, 21, 2542.  doi: 10.1016/j.tetasy.2010.09.014

    70. [70]

      Zhu, W.-T.; Gan, H.-F.; Chen, Z.-B.; Guo, K. Synth.Chem.2015, 23, 977(in Chinese).  doi: 10.15952/j.cnki.cjsc.1005-1511.2015.10.0977

    71. [71]

      Page, P.C.B.; Stephenson, G.R.; Harvey, J.; Slawin, A.M.Z. Synlett 2016, 27, 2500.  doi: 10.1055/s-0035-1562603

    72. [72]

      Zhao, F.; Tian, W.-H.; Luo, F.; Cheng, H.-L.; Jiang, Y.-B.; Chen, Z. Synth. Commun.2016, 46, 20, 1678.

    73. [73]

      Feula, A.; Fossey, J.S. RSC Adv.2013, 3, 16, 5370.  doi: 10.1039/C2RA22279E

    74. [74]

      Kroutil, J.; Trnka, T.; Cerny, M. Org. Lett.2000, 2, 1681.  doi: 10.1021/ol005746g

    75. [75]

      Kroutil, J.; Trnka, T.; Cerny, M. Synthesis 2004, 446.  doi: 10.1002/chin.199844207

    76. [76]

      Moriyama, K.; Nakamura, Y.; Togo, H. Org. Lett.2014, 16, 3812.  doi: 10.1021/ol501703y

    77. [77]

      Ghosh, S.; Shashidhar, J. Tetrahedron Lett.2009, 50, 1177.  doi: 10.1016/j.tetlet.2008.11.115

    78. [78]

      Amat, M.; Pérez, M.; Minaglia, A.T.; Casamitjana, N.; Bosch, J. Org. Lett.2005, 7, 3653.  doi: 10.1021/ol051242c

    79. [79]

      Amat, M.; Escolano, C.; Gómez-Esqué, A.; Lozano, O.; Llor, N.; Griera, R.; Bosch, J. Tetrahedron:Asymmetry 2006, 17, 1581.  doi: 10.1016/j.tetasy.2006.05.018

    80. [80]

      Torregrosa, R.; Pastor, I.M.; Yus, M. Tetrahedron 2007, 63, 947.  doi: 10.1016/j.tet.2006.11.032

    81. [81]

      Morales, C.L.; Pagenkopf, B.L. Org. Lett.2008, 10, 157.  doi: 10.1021/ol702376j

    82. [82]

      Garst, M.E.; Dolby, L.J.; Esfandiari, S.; Fedoruk, N.A.; Chamberlain, N.C.; Avey, A.A. J. Org. Chem.2000, 65, 7098.  doi: 10.1021/jo0008136

    83. [83]

      Suzuki, H.; Tsukuda, A.; Kondo, M.; Aizawa, M.; Senoo, Y.; Nakajima, M.; Watanabe, T.; Yokoyama, Y.; Murakami, Y. Tetrahedron Lett.1995, 36, 1671.  doi: 10.1016/0040-4039(95)00126-W

    84. [84]

      Rao, T.S.; Pandey, P.S. Synth. Commun.2004, 34, 3121.  doi: 10.1081/SCC-200028570

    85. [85]

      Franceschini, N.; Da N.S.; Miel, H.; Sonnet, P. Heterocycl. Commun.2005, 11, 509.

    86. [86]

      Franceschini, N.; Da N.S.; Miel, H.; Sonnet, P. Tetrahedron:Asymmetry 2003, 14, 3401.  doi: 10.1016/j.tetasy.2003.09.010

    87. [87]

      Nandi, P.; Dye, J.L.; Jackson, J.E. Tetrahedron Lett.2009, 50, 3864.  doi: 10.1016/j.tetlet.2009.04.058

    88. [88]

      Choudary, B.; Giles, R.G.; Jovic, F.; Lewis, N.; Moore, S.; Urquhart, M. Org. Process Res. Dev.2012, 16, 1927.  doi: 10.1021/op300263w

    89. [89]

      Shaw, A.Y.; Mclaren, J.A.; Nichol, G.S.; Hulme, C. Tetrahedron Lett.2012, 53, 2592.  doi: 10.1016/j.tetlet.2012.03.033

    90. [90]

      Lee, S.H.; Mu, Y.; Kim, G.W.; Kim, J.S.; Park, S.H.; Jin, T.; Lee, K.Y.; Ham, W.H. Heterocycles 2013, 87, 1749.  doi: 10.3987/COM-13-12747

    91. [91]

      Lam, T.Y.; Wang, Y.-P.; Danheiser, R.L. J. Org. Chem.2014, 45, 9396.

    92. [92]

      Rombouts, F.; Franken, D.; Martinez-Lamenca, C.; Braeken, M.; Zavattaro, C.; Chen, J.S.; Trabanco, A.A. Tetrahedron Lett.2010, 51, 4815.  doi: 10.1016/j.tetlet.2010.07.022

    93. [93]

      Lima, H.M.; Sivappa, R.; Yousufuddin, M.; Lovely, C.J. J. Org. Chem.2014, 79, 2481.  doi: 10.1021/jo4027337

    94. [94]

      Chern, C.Y.; Huang, Y.P.; Kan, W.M. Tetrahedron Lett.2003, 44, 1039.  doi: 10.1016/S0040-4039(02)02738-7

    95. [95]

      Yu, Y.-Z.; Guan, X.-P. Chin. J. Energ. Mater.1999, 7, 1(in Chinese).  doi: 10.3969/j.issn.1006-9941.1999.01.001

    96. [96]

      Lv, L.-Y.; Ou, Y.-X.; Wang, J.-L.; Chen, B.-R. Fine Chem.2003, 20, 577(in Chinese).  doi: 10.3321/j.issn:1003-5214.2003.10.001

    97. [97]

      Bayat, Y.; Hajimirsadeghi, S.S.; Pourmortazavi, S.M. Org. Process Res. Dev.2011, 15, 810.  doi: 10.1021/op200056j

    98. [98]

      Bayat, Y.; Ebrahimi, H.; Fotouhi-Far, F. Org. Process Res. Dev.2012, 16, 1733.  doi: 10.1021/op300162d

    99. [99]

      Bayat, Y.; Hajighasemali, F. Propellants Explos. Pyrotech.2016, 41, 893.  doi: 10.1002/prep.201500347

    100. [100]

      Ou, Y.-X.; Liu, J.-Q. High Energy Density Compound, National Defence Industrial Press, Beijing, 2005, pp.96~110(in Chinese).

    101. [101]

      Yang, B.W.; O'Rourke D, J.L.I. Synlett 1993, 195.

    102. [102]

      See, Y.B. JP 321962, 1994.

    103. [103]

      Wright, W.B.; Brabander, H.J. J. Org. Chem.1961, 26, 10  doi: 10.1021/jo01060a003

    104. [104]

      Olofson, R.A.; Martz, J.T.Senet, J.P.; Piteau, M.; Malfroot, T. J. Org. Chem.1984, 49, 2081.  doi: 10.1021/jo00185a072

    105. [105]

      Kanth, J.V.B,; Reddy, C.K.; Periasamy, M. Synth. Commun.1994, 24, 313.  doi: 10.1080/00397919408011190

    106. [106]

      Igarashi, J.; Kobayashi, Y. Tetrahedron Lett.2005, 46, 6381.  doi: 10.1016/j.tetlet.2005.06.171

    107. [107]

      Annamalai, M.; Hristeva, S.; Bielska, M.; Ortega, R.; Kumar, K. Molecules 2017, 22, 827.  doi: 10.3390/molecules22050827

    108. [108]

      Pandey, G.; .Rani, K.S. Tetrahedron Lett.1988, 29, 4157.  doi: 10.1016/S0040-4039(00)80443-8

    109. [109]

      Smith, A.J.; Young, A.; Rohrbach, S.; O'Connor, E.F.; Allison, M.; Wang, H.-S.; Poole, D.L.; Tuttle, T.; Murphy, J.A. Angew. Chem., Int. Ed.2017, 56, 13747.  doi: 10.1002/anie.201707914

    110. [110]

      Golantsov, N.E.; Karchava, A.V.; Yurovskaya, M.A. Chem. Heterocycl. Compd. 2006, 42, 1021.  doi: 10.1007/s10593-006-0198-8

    111. [111]

      Montero, M.L.; Rodríguez, D.A.; Gotor, F.V.; Fernández, V.G.; Lavandera, I. Green Chem.2015, 46, 2794.

    112. [112]

      Grayson, E, J.; Davis, B.G. Org. Lett.2005, 7, 2361.  doi: 10.1021/ol050624f

    113. [113]

      Baker, S.R.; Parsons A.F.; Wilson M. Tetrahedron Lett.1998, 39, 331.  doi: 10.1016/S0040-4039(97)10480-4

    114. [114]

      Yanada, R.; Obika, S.; Kobayashi Y.; Inokuma, T.; Oyama, M.; Yanada, K.; Takemoto Y. Adv. Synth. Catal.2005, 347, 1632.  doi: 10.1002/adsc.200505147

  • 加载中
    1. [1]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    2. [2]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    3. [3]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    4. [4]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    5. [5]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    6. [6]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    7. [7]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    8. [8]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    9. [9]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    10. [10]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    11. [11]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    12. [12]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    13. [13]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    14. [14]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    15. [15]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    16. [16]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    17. [17]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    18. [18]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    19. [19]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    20. [20]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

Metrics
  • PDF Downloads(504)
  • Abstract views(7774)
  • HTML views(3234)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return