Citation: Huang Chibao, Chen Hui, Li Fuqin, An Siya. Two-Photon Fluorescence Probes for Small Biomolecules Imaging[J]. Chinese Journal of Organic Chemistry, ;2019, 39(9): 2467-2484. doi: 10.6023/cjoc201901024 shu

Two-Photon Fluorescence Probes for Small Biomolecules Imaging

  • Corresponding author: Huang Chibao, huangchibao@163.com
  • Received Date: 17 January 2019
    Revised Date: 24 February 2019
    Available Online: 2 September 2019

    Fund Project: the National Natural Science Foundation of China 21562050the Guizhou Province High-level Innovative Talents Training Project—Hundred Talents Program [2016]5683Project supported by the Guizhou Province High-level Innovative Talents Training Project—Hundred Talents Program (No. [2016]5683), the National Natural Science Foundation of China (No. 21562050), the Special Fund Project of the Construction of the Eighth Batch of Scientific and Technological Innovation Talent Team in Guizhou Province [No. (2015)4007], the Guizhou Science and Technology Fund Project (No. J[2015]2146), the Key Project of Education Department of Guizhou Province (No. KY[2014]296) and the Teaching Contents and Curriculum System Reform Project of Higher Education in Guizhou Province (No. KY [2014] JXGChcb)the Special Fund Project of the Construction of the Eighth Batch of Scientific and Technological Innovation Talent Team in Guizhou Province (2015)4007the Teaching Contents and Curriculum System Reform Project of Higher Education in Guizhou Province KY [2014] JXGChcbthe Key Project of Education Department of Guizhou Province KY[2014]296the Guizhou Science and Technology Fund Project J[2015]2146

Figures(21)

  • Small molecules (biological small molecules) in vivo are not only in a large number, involving inorganic small molecules, such as SO2, H2S, NO and CO, and more organic small molecules, such as monosaccharides, oligosaccharides, hormones, coenzymes, glycerol, stimulating factors, regulatory factors, Vitamins, etc., moreover, play an important role in pathology, physiology, and so on. Therefore, it is necessary to observe and monitor small molecules in vivo in real time, and the two-photon fluorescence probe is a necessary tool to achieve this goal. The advantages of two-photon fluorescence probe, such as fixed target (very small dot) excitation, high horizontal and vertical resolution, no photobleaching, no phototoxicity and deep imaging in tissues, and so on, demonstrate its unparalleled superiority. It can be used for dynamic 3D observation and monitoring of biological small molecules in cells or tissues. In this paper, CO, monosaccharide (glucose, β-galactosidase), SO2, H2S, NO, peroxy (sulfur) compounds, mercaptan/thiophenol, 1O2, formaldehyde, HNO, HclO, O2·- and ONOO- two-photon fluorescence probes which have been developed in recent 5 years were reviewed. The sensing mechanisms of these two-photon fluorescence probes were systematically analyzed, and the development and prospect of two-photon fluorescence probes for small biomolecules are prospected.
  • 加载中
    1. [1]

      Lin, V.; Chang, C. Curr. Opin. Chem. Biol. 2012, 16, 595.  doi: 10.1016/j.cbpa.2012.07.014

    2. [2]

      Dou, K.; Chen, G.; Yu, F.; Sun, Z.; Li, G.; Zhao, X.; Chen, L.; You, J. J. Mater. Chem. B 2017, 5, 8389.  doi: 10.1039/C7TB01900A

    3. [3]

      Feng, W.; Liu, D.; Zhai, Q.; Feng, G. Sens. Actuators, B 2017, 240, 625.  doi: 10.1016/j.snb.2016.09.023

    4. [4]

      Zhang, L.; Zou, L.-Y.; Guo, J.-F.; Wang, D.; Ren, A.-M. New. J. Chem. 2015, 39, 8342.  doi: 10.1039/C5NJ01023C

    5. [5]

      McCann, T. E.; Kosaka, N.; Mitsunaga, M.; Choyke, P. L.; Gildersleeve, J. C.; Kobayashi, H. Bioconjugate Chem. 2010, 21, 1925.  doi: 10.1021/bc100313p

    6. [6]

      Wang, Q.; Wang, W.; Li, S.; Jiang, J.; Li, D.; Feng, Y.; Sheng, H.; Meng, X.; Zhu, M.; Wang, X. Dyes Pigm. 2016, 134, 297.  doi: 10.1016/j.dyepig.2016.07.030

    7. [7]

      Zhang, C.; Wang, D.; Zhang, L.; Guo, J.-F.; Ren, A.-M. RSC Adv. 2016, 6, 70960.  doi: 10.1039/C6RA11712K

    8. [8]

      Sarkar, A. R.; Kang, D. E.; Kim, H. M.; Cho, B. R. Inorg. Chem. 2014, 53, 1794.  doi: 10.1021/ic402475f

    9. [9]

      Yang, X.; Zhou, Y.; Zhang, X.; Yang, S.; Chen, Y.; Guo, J.; Li, X.; Qing, Z.; Yang, R. Chem. Commun. 2016, 52, 10289.  doi: 10.1039/C6CC05254A

    10. [10]

      Huang, C.-B.; Chen, S.-Y. Prog. Chem. 2017, 29, 1215.

    11. [11]

      Kim, H. M.; Cho, B. R. Chem. Rev. 2015, 115, 5014.  doi: 10.1021/cr5004425

    12. [12]

      Chen, Y.; Guan, R.; Zhang, C.; Huang, J.; Ji, L.; Chao, H. Coord. Chem. Rev. 2016, 310, 16.  doi: 10.1016/j.ccr.2015.09.010

    13. [13]

      Qian, L.; Li, L.; Yao, S. Q. Acc. Chem. Res. 2016, 49, 626.  doi: 10.1021/acs.accounts.5b00512

    14. [14]

      Zheng, K.; Lin, W.; Tan, L.; Chen, H.; Cui, H. Chem. Sci. 2014, 5, 3439.  doi: 10.1039/C4SC00283K

    15. [15]

      Rimmer, R. D.; Pierri, A. E.; Ford, P. C. Coord. Chem. Rev. 2012, 256, 1509.  doi: 10.1016/j.ccr.2011.12.009

    16. [16]

      Brackmann, C.; Sjoholm, J.; Rosell, J.; Richter, M.; Bood, J.; Alden, M. Proc. Combust. Inst. 2013, 34, 3541.  doi: 10.1016/j.proci.2012.05.011

    17. [17]

      Lim, C. S.; Chung, C.; Kim, H. M.; An, M. J.; Tian, Y. S.; Chun, H. J.; Cho, B. R. Chem. Commun. 2012, 48, 2122.  doi: 10.1039/c2cc16792a

    18. [18]

      Lee, H. W.; Heo, C. H.; Sen, D.; Byun, H.-O.; Kwak, I. H.; Yoon, G. Anal. Chem. 2014, 86, 10001.  doi: 10.1021/ac5031013

    19. [19]

      Huang, J.; Li, N.; Wang, Q.; Gu, Y.; Wang, P. Sens. Actutors, B Chem. 2017, 246, 1.  doi: 10.1016/j.snb.2017.02.047

    20. [20]

      Li, H.; Zhou, X.; Fan, J.; Long, S.; Du, J.; Wang, J.; Peng, X. Sens. Actuators, B 2018, 254, 709.  doi: 10.1016/j.snb.2017.07.082

    21. [21]

      Ma, Y.; Tang, Y.; Zhao, Y.; Gao, S.; Lin, W. Anal. Chem. 2017, 89, 9388.  doi: 10.1021/acs.analchem.7b02216

    22. [22]

      Li, H.; Yao, Q.; Fan, J.; Hu, C.; Xu, F.; Du, J.; Wang, J.; Peng X. Ind. Eng. Chem. Res. 2016, 55, 1477.  doi: 10.1021/acs.iecr.5b04530

    23. [23]

      Zhao, M.; Liu, D.; Zhou, L.; Wu, B.; Tian, X.; Zhang, Q.; Zhou, H.; Yang, J.; Wu, J.; Tian, Y. Sens. Actuators, B 2018, 255, 1228.  doi: 10.1016/j.snb.2017.08.053

    24. [24]

      Yang, X.; Zhou, Y.; Zhang, X.; Yang, S.; Chen, Y.; Guo, J.; Li, X.; Qing, Z.; Yang, R. Chem. Commun. 2016, 52, 10289.  doi: 10.1039/C6CC05254A

    25. [25]

      Yang, S.; Wen, X.; Yang, X.; Li, Y.; Guo, C.; Zhou, Y.; Li, H.; Yang, R. Anal. Chem. 2018, 90, 14514  doi: 10.1021/acs.analchem.8b04355

    26. [26]

      Liu, X.-L.; Du, X.-J.; Dai, C.-G.; Song, Q.-H. J. Org. Chem. 2014, 79, 9481.  doi: 10.1021/jo5014838

    27. [27]

      Chen, L.; Wu, D.; Lim, C. S.; Kim, D.; Nam, S.-J.; Lee, W.; Kim, G.; Kim, H. M.; Yoon, J. Chem. Commun. 2017, 53, 4791.  doi: 10.1039/C7CC01695F

    28. [28]

      Zheng, K.; Lin, W.; Tan, L.; Cheng, D. Anal. Chim. Acta 2015, 853, 548.  doi: 10.1016/j.aca.2014.10.024

    29. [29]

      Zhou, L.; Lu, D.; Wang, Q.; Liu, S.; Lin, Q.; Sun, H. Biosen. Bioelectron. 2017, 91, 699.  doi: 10.1016/j.bios.2016.12.055

    30. [30]

      Yuan, L.; Jin, F.; Zeng, Z.; Liu, C.; Luo, S.; Wu, J. Chem. Sci. 2015, 6, 2360.  doi: 10.1039/C4SC03883E

    31. [31]

      Singha, S.; Kim, D.; Moon, H.; Wang, T.; Kim, K. H.; Shin, Y. H.; Jung, J.; Seo, E.; Lee, S.-J.; Ahn, K. H. Anal. Chem. 2015, 87, 1188.  doi: 10.1021/ac503806w

    32. [32]

      Mao, Z.; Feng, W.; Li, Z.; Zeng, L.; Lv, W.; Liu, Z. Chem. Sci. 2016, 7, 5230.  doi: 10.1039/C6SC01313A

    33. [33]

      Dong, X.; Heo, C H.; Chen, S.; Kim, H.; Liu, Z. Anal. Chem. 2014, 86, 308.  doi: 10.1021/ac403226h

    34. [34]

      Mao, Z.; Jiang, H.; Song, X.; Hu, W.; Liu, Z. Anal. Chem. 2017, 89, 9620.  doi: 10.1021/acs.analchem.7b02697

    35. [35]

      Zhao, W.; Li, Y.; Yang, S.; Chen, Y.; Zheng, J.; Liu, C.; Qing, Z.; Li, J.; Yang, R. Anal. Chem. 2016, 88, 4833.  doi: 10.1021/acs.analchem.6b00521

    36. [36]

      Li, N.; Huang, J.; Wang, Q.; Gu, Y.; Wang, P. Sens. Actuators, B 2018, 254, 411.  doi: 10.1016/j.snb.2017.07.133

    37. [37]

      Zeng, L.; Chen, S.; Xia, T.; Hu, W.; Li, C.; Liu, Z. Anal. Chem. 2015, 87, 3004.  doi: 10.1021/acs.analchem.5b00172

    38. [38]

      Shang, H.; Chen, H.; Tang, Y.; Guo, R.; Lin, W. Sens. Actuators, B 2016, 230, 773.  doi: 10.1016/j.snb.2016.02.124

    39. [39]

      Zhang, J.; Zhu, X.; Hu, X.; Liu, H.; Li, J.; Feng, L.; Yin, X.; Zhang, X.-B.; Tan, W. Anal. Chem. 2016, 88, 11892.  doi: 10.1021/acs.analchem.6b03702

    40. [40]

      Dai, X.; Kong, X.; Lin, W. Dyes Pigm. 2017, 142, 306.  doi: 10.1016/j.dyepig.2017.03.045

    41. [41]

      Lee, Y. H.; Ren, W. X.; Han, J.; Sunwoo, K.; Lim, J.-Y.; Kim, J.-H.; Kim J. S. Chem. Commun. 2015, 51, 14401.  doi: 10.1039/C5CC06038A

    42. [42]

      Fan, J.; Han, Z.; Kang, Y.; Peng, X. Sci. Rep. 2016, 6, 19562.  doi: 10.1038/srep19562

    43. [43]

      Liu, H.-W.; Zhang, X.-B.; Zhang, J.; Wang, Q.-Q.; Hu, X.-X.; Wang, P.; Tan, W. Anal. Chem. 2015, 87, 8896.  doi: 10.1021/acs.analchem.5b02021

    44. [44]

      Ma, Q.; Xu, J.; Zhang, X.; Zhou, L.; Liu, H.; Zhang, J. Sens. Actuators, B 2016, 229, 434.  doi: 10.1016/j.snb.2016.02.005

    45. [45]

      Sarkar, A. R.; Heo, C. H.; Kim, E.; Lee, H. W.; Singh, H.; Kim, J. J.; Kang, H.; Kang, C.; Kim, H. M. Chem. Commun. 2015, 51, 2407.  doi: 10.1039/C4CC09416F

    46. [46]

      Huang, C. B.; Ren, A. X.; Li, H. B.; Yang, N. F. Chem. J. Chin. Univ. 2010, 31, 2222(in Chinese).

    47. [47]

      Nawimanage, R. R.; Prasai, B.; Hettiarachchi, S. U.; McCarley, R. L. Anal. Chem. 2017, 89, 6886.  doi: 10.1021/acs.analchem.7b01384

    48. [48]

      Chen, C.; Zhou, L.; Huang, X.; Liu, W. J. Mater. Chem. B 2017, 5, 5892.  doi: 10.1039/C7TB01104K

    49. [49]

      Yang, S.; Guo, C.; Li, Y.; Guo, J.; Xiao, J.; Qing, Z.; Li, J.; Yang, R. ACS Sens. 2018, 3, 2415.  doi: 10.1021/acssensors.8b00919

    50. [50]

      Liu, H.-W.; Xu, S.; Wang, P.; Hu, X.; Zhang, J.; Yuan, L.; Zhang, X.-B.; Tan, W. Chem. Commun. 2016, 52, 12330.  doi: 10.1039/C6CC05880A

    51. [51]

      Xie, X. L.; Tang, F. Y.; Shangguang, X. Y.; Che, S. Y.; Niu, J. Y.; Xiao, Y. S.; Wang, X.; Tang, B. Chem. Commun. 2017, 53, 6520.  doi: 10.1039/C7CC03050A

    52. [52]

      Tang, Y. H.; Kong, X. Q.; Liu, Z.-R.; Xu, A.; Lin, W. Y. Anal. Chem. 2016, 88, 9359.  doi: 10.1021/acs.analchem.6b02879

    53. [53]

      Tang, Y. H.; Kong, X. Q.; Liu, Z.-R.; Xu, A.; Lin, W. Y. Angew. Chem. 2016, 55, 3356.  doi: 10.1002/anie.201510373

    54. [54]

      Xie, Z. D.; Ge, J. Y.; Zhang, H. T.; Bai, T. W.; He, S. Y.; Ling, J.; Sun, H Y.; Zhu, Q. Sens. Actuators, B 2016, 241, 1050.

    55. [55]

      Singha, S.; Jun, Y. W.; Bae, J.; Ahn, K. H. Anal. Chem. 2017, 89, 3724.  doi: 10.1021/acs.analchem.7b00044

    56. [56]

      Li, J.-B.; Wang, Q.-Q.; Yuan, L.; Wu, Y.-X.; Hu, X.-X.; Zhang, X.-B.; Tan, W. Analyst 2016, 141, 3395.  doi: 10.1039/C6AN00473C

    57. [57]

      Dong, B.; Song, X.; Kong, X.; Wang, C.; Zhang N.; Lin, W. J. Mater. Chem. B 2017, 5, 5218.  doi: 10.1039/C7TB00703E

    58. [58]

      Zheng, K.; Lin, W.; Cheng, D.; Chen, H.; Liub, Y.; Liu, Keyin. Chem. Commun. 2015, 51, 5754.  doi: 10.1039/C4CC10382C

    59. [59]

      Xie, X.; Wu, T.; Wang, X.; Li, Y.; Wang, K.; Zhao, Z.; Jiao, X.; Tang, B. Chem. Commun. 2018, 54, 11965.  doi: 10.1039/C8CC07312K

    60. [60]

      Mao, Z.; Ye, M.; Hu, W.; Ye, X.; Wang, Y.; Zhang, H.; Li, C.; Liu, Z. Chem. Sci. 2018, 9, 6035.  doi: 10.1039/C8SC01697F

    61. [61]

      Yao, S.; Ma, C.; Lu, Y.; Wei, X.; Feng, X.; Miao, P.; Yang, G.; Zhang, J.; Yan, M.; Yu, J. Analyst 2019, 144, 1704.  doi: 10.1039/C8AN02196A

    62. [62]

      Liu, H.-W.; Zhu, X.; Zhang, J.; Zhang, X.-B.; Tan, W. Analyst 2016, 141, 5893.  doi: 10.1039/C6AN01178K

    63. [63]

      Mulay, S. V.; Kim, Y.; Lee, K. J.; Yudhistira, T.; Parkc, H.-S.; Churchill D. G. New J. Chem. 2017, 41, 11934.  doi: 10.1039/C7NJ02530K

    64. [64]

      Li, Y.; Xie, X.; Yang, X.; Li, M.; Jiao, X.; Sun, Y.; Wang, X.; Tang, B. Chem. Sci. 2017, 8, 4006.  doi: 10.1039/C7SC00303J

  • 加载中
    1. [1]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    2. [2]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    3. [3]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    4. [4]

      Zhao Lu Hu Lv Qinzhuang Liu Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005

    5. [5]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    6. [6]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    7. [7]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    8. [8]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    9. [9]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    10. [10]

      Benhua Wang Chaoyi Yao Yiming Li Qing Liu Minhuan Lan Guipeng Yu Yiming Luo Xiangzhi Song . 一种基于香豆素氟离子荧光探针的合成、表征及性能测试——“科研反哺教学”在有机化学综合实验教学中的探索与实践. University Chemistry, 2025, 40(6): 201-209. doi: 10.12461/PKU.DXHX202408070

    11. [11]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    12. [12]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    13. [13]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    14. [14]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    15. [15]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    16. [16]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    17. [17]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    18. [18]

      Zhifeng CAIYing WUYanan LIGuiyu MENGTianyu MIAOYihao ZHANG . Effective detection of malachite green by folic acid stabilized silver nanoclusters. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 983-993. doi: 10.11862/CJIC.20240394

    19. [19]

      Wei GAOMeiqi SONGXuan RENJianliang BAIJing SUJianlong MAZhijun WANG . A self-calibrating fluorescent probe for the selective detection and bioimaging of HClO. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1173-1182. doi: 10.11862/CJIC.20250112

    20. [20]

      Lei ZHANGCheng HEYang JIAO . An azo-based fluorescent probe for the detection of hypoxic tumor cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1162-1172. doi: 10.11862/CJIC.20250081

Metrics
  • PDF Downloads(40)
  • Abstract views(3246)
  • HTML views(995)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return