Citation: Su Shimiao, Zhu Mo, Zhang Daqiang, Yuan Dekai. Synthesis and Biological Activity Study of Novel Cyano-containing Multi-substituted Pyrazoles Obtained via Strecker Reaction[J]. Chinese Journal of Organic Chemistry, ;2019, 39(7): 2026-2034. doi: 10.6023/cjoc201812019 shu

Synthesis and Biological Activity Study of Novel Cyano-containing Multi-substituted Pyrazoles Obtained via Strecker Reaction

  • Corresponding author: Yuan Dekai, yuandekai@cau.edu.cn; yuandekai@aliyun.com
  • Received Date: 11 December 2018
    Revised Date: 28 February 2019
    Available Online: 21 July 2019

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 20902107)the National Natural Science Foundation of China 20902107

  • In order to study the Strecker reaction of multi-substituted amino armorotic heterocycles and the biological activity of the target compounds, the reaction of 3, 5-disubstituted pyrazole-4-amine, TMSCN and aldehydes was realized for the first time by the catalysis of anhydrous ZnI2 with 4 molecular seive. The reaction condition was preliminarily optimized and the substrate scop of aldehydes was studied. 20 target compounds of cyano-containing multi-substituted pyrazoles were obtained with the highest yield of 93.5%, and the sturctures of the compounds were confirmed via 1H NMR, 13C NMR and HRMS methods. Priliminary bioassay of the target compounds showed that 13 target compounds possessed 100% larvicidal activity against mosquito at a concentration of 10×10-3 g/L, and four compounds possessed over 40% larvicidal activity at 5×10-3 g/L, and 10 compounds poccessed weak larvicidal activity against army worm at 500×10-3 g/L with the highest activity of 40%; five compounds were confirmed poccessed good inactivation activity against tobacco mosaic virus (TMV) in vivo with the highest inhibition rate of 31.8%, and four compounds possessed moderate host-protection activity against TMV in vivo with the highest rate of 28.3%; in addition, at a concentration of 50×10-3 g/L, three compounds showed moderate fungicidal activity against Pythium aphanidermatum, Phomopsis asparagi, Phytophora capsic and Rhizoctonia solani in vitro. 4-((1-cyanododecyl)amino)-5-ethyl-N-methyl-1H-pyrazole-3-carboxamide (3t) possessed the highest activity against Phytophora capsic of 62.3%. All the results showed that 3, 5-disubstitued pyrazole-4-amine could undergo Strecker reaction smoothly, and this study gave a useful example to explore the Strecker reaction of other multi-substituted aromatic hetreocyclic amines. Additionally, the larvicidal and anti-TMV activity of the target compounds gave some clues in design cyano-containing biological heterocycles.
  • 加载中
    1. [1]

      (a) Strecker, D. Ann. Chem. Pharm. 1850, 75, 27.
      (b) Kouznetsov, V. V.; Galvis, C. E. P. Tetrahedron 2018, 74, 773.

    2. [2]

      (a) de Bruin, G.; Mock, E. D.; Hoogendoorn, S.; van den Nieuwendijk, A. M. C. H.; Mazurek, J.; van der Marel, G. A.; Florea, B. I.; Overkleeft, H. S. Chem. Commun. 2016, 52, 4064.
      (b) Hirata, T.; Ueda, A.; Oba, M.; Doi, M.; Demizu, Y.; Kurihara, M.; Nagano, M.; Suemune, H.; Tanaka, M. Tetrahedron 2015, 71, 2409.

    3. [3]

      (a) Song, R. Z.; Han, Z. M.; He, Q. Q.; Fan, R. H. Org. Lett. 2016, 18, 5328.
      (b) Tay, G. C.; Sizemore, N.; Rychnovsky, S. D. Org. Lett. 2016, 18, 3050.
      (c) Guchhait, S. K.; Priyadarshani, G.; Gulghane, N. M. RSC Adv. 2016, 6, 56056.
      (d) Afraj, S. N.; Chen, C. P.; Lee, G. H. RSC Adv. 2016, 6, 29783.

    4. [4]

      (a) Yashin, N. V.; Averina, E. B.; Sedenkova, K. N.; Kuznetsova, T. S.; Zefirov, N. S. Russ. Chem. Bull. 2013, 62, 928.
      (b) Acena, J. L.; Sorochinsky, A. E.; Soloshonok, V. A. Synthesis 2012, 44, 1591.

    5. [5]

      (a) Malins, L. R.; deGruyter, J. N.; Robbins, K. J.; Scola, P. M.; Eastgate, M. D.; Ghadiri, M. R.; Baran, P. S. J. Am. Chem. Soc. 2017, 139, 5233.
      (b) Xing, J. H.; Brooks, A. F.; Fink, D.; Zhang, H. B.; Piert, M. R.; Scott, P. J. H.; Shao, X. Synlett 2017, 28, 371.
      (c) Cai, H. C.; Mangner, T. J.; Muzik, O.; Wang, M. W.; Chugani, D. C.; Chugani, H. T. ACS Med. Chem. Lett. 2014, 5, 1152.
      (d) Kokhan, S. O.; Tymtsunik, A. V.; Grage, S. L.; Afonin, S.; Babii, O.; Berditsch, M.; Strizhak, A. V.; Bandak, D.; Platonov, M. O.; Komarov, I. V.; Ulrich, A. S.; Mykhailiuk, P. K. Angew. Chem., Int. Ed. 2016, 55, 14788.

    6. [6]

      (a) Katsuhiko, M.; Bilal, A. A.; Christopher, M. S.; Shajila, S.; Michio, K. J. Am. Chem. Soc. 2016, 138, 12975.
      (b) Dhanasekaran, S.; Suneja, A.; Bisai, V.; Singh, V. K. Org. Lett. 2016, 18, 634.
      (c) Chen, C. H.; Genapathy, S.; Fischer, P. M.; Chan, W. C. Org. Biomol. Chem. 2014, 12, 9764.
      (d) Aleiwi, B. A.; Schneider, C. M.; Kurosu, M. J. Org. Chem. 2012, 77, 3859.

    7. [7]

      (a) Brahmachari, G.; Kumar, A.; Srivastava, A. K.; Gangwar, S.; Misra, N.; Gupta, V. K.; Rajnikant, R. RSC Adv. 2015, 5, 80967.
      (b) Luis, J. A. S.; De Aquino, T. M.; Lira, B.F.; Filho, P. F. A.; Scotti, M. T.; Scotti, L.; De Moura, R. O.; Mendonca, F. J. Acta Pharm. (Zagreb, Crotia) 2014, 64, 233.

    8. [8]

      (a) Carreno Otero, A. L.; Vargas Mendez, L. Y.; Duque L., J. E.; Kouznetsov, V. V. Eur. J. Med. Chem. 2014, 78, 392.
      (b) Yu, X. H.; Wang, G. H.; Kong, X. L.; Huang, H. Y. CN 103183707, 2013[Chem. Abstr. 2013, 159, 229714].
      (c) Lamberth, C.; Dumeunier, R.; Trah, S.; Wendeborn, S.; Godwin, J.; Schneiter, P.; Corran, A. Bioorg. Med. Chem. 2013, 21, 127.

    9. [9]

      (a) Parker, E. T.; Zhou, M. S.; Burton, A. S.; Glavin, D. P.; Dworkin, J. P.; Krishnamurthy, R.; Fernandez, F. M.; Bada, J. L. Angew. Chem., Int. Ed. 2014, 53, 8132.
      (b) Bolm, C.; Mocci, R.; Schumacher, C.; Turberg, M.; Puccetti, F.; Hernandez, J. G. Angew. Chem., Int. Ed. 2018, 57, 2423.
      (c) Riffet, V.; Frison, G.; Bouchoux, G. J. Phys. Chem. A 2018, 122, 1643.

    10. [10]

      Li, P. C.; Zhang, Y. D.; Chen, Z. L.; Zhang, X. X. Tetrahedron Lett. 2017, 58, 1854.  doi: 10.1016/j.tetlet.2017.03.087

    11. [11]

      Reddy, V. V. R.; Saritha, B.; Ramu, R.; Varala, R.; Jayashree, A. Asian J. Chem. 2014, 26, 7439.

    12. [12]

      Hajipour, A. R.; Dehbane, I. M. Iran. J. Catal. 2012, 2, 147.

    13. [13]

      Wang, S. Y.; Xu, J. N.; Zheng, J. F.; Chen, X. D.; Shan, L.; Gao, L. J.; Wang, L.; Yu, M.; Fan, Y. Inorg. Chim. Acta 2015, 437, 81.  doi: 10.1016/j.ica.2015.08.012

    14. [14]

      (a) Chai, J.; Wang, P. C.; Jia, J.; Ma, B.; Sun, J.; Tao, Y. F.; Zhang, P.; Wang, L.; Fan, Y. Polyhedron 2018, 141, 369.
      (b) Ibanez, S.; Poyatos, M.; Peris, E. Chem. Comm. 2017, 53, 3733.
      (c) Prakash, G. K. S.; Mathew, T.; Panja, C.; Kulkarni, A.; Olah, G. A.; Harmer, M. A. Adv. Synth. Catal. 2012, 354, 2163.

    15. [15]

      (a) Saravanan, S.; Khan, N. H.; Jakhar, A.; Ansari, A.; Kureshy, R. I.; Abdi, S. H. R.; Kumar, G. RSC Adv. 2015, 5, 99951.
      (b) Zhu, C.; Xia, J. Bao; Chen, C. Tetrahedron Lett. 2014, 55, 232.

    16. [16]

      Costantini, N. V.; Bates, A. D.; Haun, G. J.; Chang, N. M.; Moura- Letts, G. ACS Sustainable Chem. Eng. 2016, 4, 1906.  doi: 10.1021/acssuschemeng.6b00241

    17. [17]

      Li, N. B.; Wang, J. Y.; Zhang, X. H.; Qiu, R. H.; Wang, X; Chen, J. Y.; Yin, S. F.; Xu, X. H. Dalton Trans. 2014, 43, 11696.  doi: 10.1039/C4DT00549J

    18. [18]

      Brahmachari, G.; Banerjee, B. Asian J. Org. Chem. 2012, 1, 251.  doi: 10.1002/ajoc.201200055

    19. [19]

      Zhang, X. L.; Wu, Q. P.; Zhang, Q. S. J. Chem. Res. 2013, 37, 690.  doi: 10.3184/174751913X13814077309487

    20. [20]

      Ghasemnejad-Bosra, H.; Arta, R. Org. Chem.: Indian J. 2015, 11, 399.

    21. [21]

      Huber, R.; Bigler, R.; Mezzetti, A. Organometallics 2015, 34, 3374.  doi: 10.1021/acs.organomet.5b00357

    22. [22]

      Khalafi-Nezhad, A.; Divar, M.; Panahi, F. J. Org. Chem. 2013, 78, 10902.  doi: 10.1021/jo401890g

    23. [23]

      Ghafuri, H.; Roshani, M. RSC Adv. 2014, 4, 58280.  doi: 10.1039/C4RA11957F

    24. [24]

      Nammalwar, B.; Fortenberry, C.; Bunce, R. A. Tetrahedron Lett. 2014, 55, 379.  doi: 10.1016/j.tetlet.2013.11.035

    25. [25]

      (a) Khazdooz, L.; Zarei, A.; Hajipour, A. R.; Sheikhan, N. Iran. J. Catal. 2012, 2, 63.
      (b) Akbari, J. C. R. Chim. 2012, 15, 471.

    26. [26]

      Sengupta, A.; Su, C. L.; Bao, C. L.; Nai, C. T.; Loh, K. P. ChemCatChem 2014, 6, 2507.  doi: 10.1002/cctc.201402254

    27. [27]

      Zhang, J.; Du, G. F.; Gu, C. Z.; Dai, B. J. Chin. Org. Chem. 2017, 37, 914(in Chinese).
       

    28. [28]

      (a) Chen, W.; Peng, X. W.; Zhong, L. X.; Li, Y.; Sun, R. C. ACS Sustainable Chem. Eng. 2015, 3, 1366.
      (b) Dabral, S.; Turberg, M.; Wanninger, A.; Bolm, C.; Hernandez, J. G. Molecules 2017, 22, 146/1.

    29. [29]

      Dekamin, M. G.; Azimoshan, M.; Ramezani, L. Green Chem. 2013, 15, 811.  doi: 10.1039/c3gc36901c

    30. [30]

      (a) Islami, M.; Dekamin, M. G.; Motlagh, L.; Maleki, A. Green Chem. Lett. Rev. 2018, 11, 36.
      (b) Reinares-Fisac, D.; Aguirre-Diaz, L. M.; Iglesias, M.; Snejko, N.; Gutierrez-Puebla, E.; Monge, M. A.; Gandara, F. J. Am. Chem. Soc. 2016, 138, 9089.
      (c) Xia, J.; Xu, J. N.; Fan, Y.; Song, T. Y.; Wang, L.; Zheng, J. F. Inorg. Chem. 2014, 53, 10024.
      (d) Chen, H.; Ju, J.; Meng, Q. P.; Su, J.; Lin, C.; Zhou, Z.Y.; Li, G. B.; Wang, W. L.; Gao, W. L.; Zeng, C. M.; Tang, C.; Lin, J. H.; Yang, T.; Sun, J. L. J. Am. Chem. Soc. 2015, 137, 7047.
      (e) Wang, W. L.; Wang, Y.; Wu, B.; Cong, R. H.; Gao, W. L.; Qin, B.; Yang, T. Catal. Commun. 2015, 58, 174.

    31. [31]

      (a) Azizi, N.; Farhadi, E. Appl. Organomet. Chem. 2018, 32, e4188.
      (b) Arora, P.; Rajput, J. K.; Singh, H. RSC Adv. 2015, 5, 97212.
      (c) Indalkar, K. S.; Khatri, C. K.; Chaturbhuj, G. U. Tetrahedron Lett. 2017, 58, 2144.
      (d) Mobaraki, A.; Movassagh, B.; Karimi, B. ACS Comb. Sci. 2014, 16, 352.
      (e) Gawande, M. B.; Rathi, A. K.; Nogueira, I. D.; Varma, R. S.; Branco, P. S. Green Chem. 2013, 15, 1895.

    32. [32]

      (a) Chen, D.; Xu, M. H. J. Org. Chem. 2014, 79, 7746.
      (b) Dekamin, M. G.; Mokhtari, Z. Tetrahedron 2012, 68, 922.
      (c) Yang, K.; Liu, L. J.; Liu, J. T. J. Org. Chem. 2014, 79, 3215.
      (d) Yuan, X. M.; Xu, J.; Liu, Z. J.; Yang, X. J.; Wang, L. M.; Zhang, Y.; Yang, X. Y.; He, X. P.; Liu, J. T. J. Fluorine Chem. 2012, 144, 102.

    33. [33]

      Miao, Z. W. In Tools for Stereoselective Synthesis, Eds.: Martin, M.; Boysen, K., Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2013, Chapter 1, pp. 3~26.

    34. [34]

      (a) Pellissier, H. Chem. Rev. 2013, 113, 442.
      (b) Sashikanth, S.; Raju, V.; Somaiah, S.; Rao, P. S.; Reddy, K. V. Synthesis 2013, 45, 621.

    35. [35]

      Oliveira, M. T.; Lee, J. W. ChemCatChem 2017, 9, 377.  doi: 10.1002/cctc.201601441

    36. [36]

      (a) Sugiishi, T.; Matsugi, M.; Hamamoto, H.; Amii, H. RSC Adv. 2015, 5, 17269.
      (b) Sadhukhan, A.; Saravanan, S.; Khan, N. H.; Kureshy, R. I.; Abdi, S. H. R.; Bajaj, H. C. J. Org. Chem. 2012, 77, 7076.
      (c) Su, Z. S.; Li, W. Y.; Wang, J.; Hu, C. W.; Feng, X. M. Chem.- Eur. J. 2013, 19, 1637.
      (d) Wang, D.; Liang, J. Y.; Feng, J. C.; Wang, K. R.; Sun, Q. T.; Zhao, L.; Li, D.; Yan, W. J.; Wang, R. Adv. Synth. Catal. 2013, 355, 548.

    37. [37]

      (a) Vesely, J.; Rios, R. Chem. Soc. Rev. 2014, 43, 611.
      (b) Liu, Y. L.; Yin, X. P.; Zhou, J. Chin. J. Chem. 2018, 36, 321.
      (c) Iwanejko, J.; Wojaczynska, E. Org. Biomol. Chem. 2018, 16, 7296.

    38. [38]

      Yan, H. L.; Oh, J. S.; Lee, J. W.; Song, C. E. Nat. Commun. 2012, 3, 2216/1.

    39. [39]

      (a) Kaur, J.; Chimni, S. S. Org. Biomol. Chem. 2018, 16, 3328.
      (b) Wang, H. Y.; Zheng, C.W.; Chai, Z.; Zhang, J. X.; Zhao, G. Nat. Commun. 2016, 7, 12720.

    40. [40]

      (a) Karahan, S.; Tanyeli, C. Tetrahedron Lett. 2018, 59, 3725.
      (b) Zhao, B. L.; Li, J. H.; Du, D. M. Chem. Rec. 2017, 17, 1.

    41. [41]

      Agnew-Francis, K. A.; Williams, C. M. Adv. Synth. Catal. 2016, 358, 675.  doi: 10.1002/adsc.201500949

    42. [42]

      Xue, H. S.; Tan, C. H.; Wong, M. W. Can. J. Chem. 2016, 94, 1099.  doi: 10.1139/cjc-2016-0307

    43. [43]

      Agarwal, J. Org. Biomol. Chem. 2016, 14, 10747.  doi: 10.1039/C6OB01462C

    44. [44]

      (a) Hatano, M.; Ishihara, K. Asian J. Org. Chem. 2014, 3, 352.
      (b) Ma, J. A.; Zhang, G. W. In Tools for Stereoselective Synthesis, Eds.: Martin, M.; Boysen K., Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2013, Chapter 16, pp. 351~370.

    45. [45]

      Hou, Y. L.; Sun, R. W. Y.; Zhou, X. P.; Wang, J. H.; Li, D. Chem. Commun. 2014, 50, 2295.  doi: 10.1039/C3CC47996J

    46. [46]

      Mendoza, J. H. Q.; Henao, J. A.; Otero, A. L. C.; Kouznetsov, V. V. Powder Diffr. 2016, 31, 149.  doi: 10.1017/S0885715616000075

    47. [47]

      Martinez-Ariza, G.; Nunez-Rios, J.; Lee, Y. S.; Hulme, C. Tetrahedron Lett. 2015, 56, 1038.  doi: 10.1016/j.tetlet.2014.12.127

    48. [48]

      Hu, X. C.; Li, R. Z; Li, Z. J. Chem. Res. 2014, 38, 432.  doi: 10.3184/174751914X14030207593683

    49. [49]

      (a) Hall, R. G.; Edmunds, A.; Jeanguenat, A. WO 2014166795, 2014[Chem. Abstr. 2014, 161, 613546].
      (b) Buysse, A. M.; Niyaz, N. M.; Demeter, D. A.; Zhang, Y.; Walsh, M. J.; Kubota, A.; Hunter, R.; Trullinger, T. K.; Lowe, C. T.; Knueppel, D.; Patny, A.; Garizi, N.; Leplae, P. R. J.; Wessels, F.; Ross, R. J.; Deamicis, C.; Borromeo, P. US 20140213448, 2014[Chem. Abstr. 2014, 161, 275906].
      (c) Dai, H.; Xiao, Y.-S.; Li, Z.; Xu, X.-Y.; Qian, X.-H. Chin. Chem. Lett. 2014, 25, 1014.

    50. [50]

    51. [51]

    52. [52]

      Xu, G. F.; Liu, Y. H.; Yang, X. L.; Wang D. Q.; Yuan, D. K. Chem. J. Chin. Univ. 2016, 37, 486(in Chinese).

  • 加载中
    1. [1]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    2. [2]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    3. [3]

      Xueqi Yang Juntao Zhao Jiawei Ye Desen Zhou Tingmin Di Jun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-. doi: 10.1016/j.actphy.2025.100074

    4. [4]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    5. [5]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    6. [6]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    7. [7]

      Pengcheng Yan Peng Wang Jing Huang Zhao Mo Li Xu Yun Chen Yu Zhang Zhichong Qi Hui Xu Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047

    8. [8]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    9. [9]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    10. [10]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    11. [11]

      Aiyi Xin Jiawei Li Xinyang Ran Chuanjiang Fu Zhiguo Wang . Collaborative Science and Education Based Experimental Design in Organic Chemistry: A Case Study of the Nucleophilic Substitution Reaction of 2-Hydroxymethyl-4,6-Di-Tert-Butylphenol. University Chemistry, 2025, 40(5): 366-375. doi: 10.12461/PKU.DXHX202407031

    12. [12]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    13. [13]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    14. [14]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    15. [15]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

    16. [16]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    17. [17]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    18. [18]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    19. [19]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    20. [20]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

Metrics
  • PDF Downloads(7)
  • Abstract views(1277)
  • HTML views(143)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return