Application of Fluoroboron Fluoresceins (BODIPYS) and Their Derivatives in the Synergistic Diagnosis and Treatment of Tumor
- Corresponding author: Meng Shuxian, msxmail@tju.edu.cn
Citation:
Feng Tong, Xue Zhongbo, Yin Juanjuan, Jiang Xu, Feng Yaqing, Meng Shuxian. Application of Fluoroboron Fluoresceins (BODIPYS) and Their Derivatives in the Synergistic Diagnosis and Treatment of Tumor[J]. Chinese Journal of Organic Chemistry,
;2019, 39(7): 1891-1912.
doi:
10.6023/cjoc201812016
Ranji-Burachaloo, H.; Gurr, P. A.; Dunstan, D. E.; Qiao, G. G. ACS Nano 2018.
Matsui, H.; Hazama, S.; Shindo, Y.; Nagano, H. Expert Rev. Anticancer Ther. 2018, 18, 1205.
doi: 10.1080/14737140.2018.1531707
Bertrand, B.; Passador, K.; Goze, C.; Denat, F.; Bodio, E.; Salmain, M. Coord. Chem. Rev. 2018, 358, 108.
doi: 10.1016/j.ccr.2017.12.007
Kamkaew, A.; Lim, S. H.; Lee, H. B.; Kiew, L. V.; Chung, L. Y.; Burgess, K. Chem. Soc. Rev. 2013, 42, 77.
doi: 10.1039/C2CS35216H
Yao, L.; Xiao, S.; Dan, F. J. Chem. 2013, 2013, 10.
Zhao, J.; Xu, K.; Yang, W.; Wang, Z.; Zhong, F. Chem. Soc. Rev. 2015, 44, 8904.
doi: 10.1039/C5CS00364D
Awuah, S. G.; You, Y. RSC Adv. 2012, 2, 11169.
doi: 10.1039/c2ra21404k
Durantini, A. M.; Heredia, D. A.; Durantini, J. E.; Durantini, E. N. Eur. J. Med. Chem. 2018, 144, 651.
doi: 10.1016/j.ejmech.2017.12.068
Zhang, J.; Jiang, C.; Figureueiro Longo, J. P.; Azevedo, R. B.; Zhang, H.; Muehlmann, L. A. Acta Pharm. Sin. B 2018, 8, 137.
doi: 10.1016/j.apsb.2017.09.003
Zou, J.; Yin, Z.; Wang, P.; Chen, D.; Shao, J.; Zhang, Q.; Sun, L.; Huang, W.; Dong, X. Chem. Sci. 2018, 9, 2188.
doi: 10.1039/C7SC04694D
Raza, M. K.; Gautam, S.; Howlader, P.; Bhattacharyya, A.; Kondaiah, P.; Chakravarty, A. R. Inorg. Chem. 2018, 57, 14374.
doi: 10.1021/acs.inorgchem.8b02546
Wang, Q.; Ng, D. K.; Lo, P.-C. J. Mater. Chem. B 2018, 6, 3285.
doi: 10.1039/C8TB00593A
Ruan, Z.; Miao, W.; Yuan, P.; Le, L.; Jiao, L.; Hao, E.; Yan, L. Bioconjugate Chem. 2018, 29, 3441.
doi: 10.1021/acs.bioconjchem.8b00576
Yuan, P.; Ruan, Z.; Jiang, W.; Liu, L.; Dou, J.; Li, T.; Yan, L. J. Mater. Chem. B 2018, 6, 2323.
doi: 10.1039/C8TB00493E
Yuan, P.; Ruan, Z.; Li, T.; Tian, Y.; Cheng, Q.; Yan, L. Nanomedicine 2018, 15, 198.
Ruan, Z.; Zhao, Y.; Yuan, P.; Liu, L.; Wang, Y.; Yan, L. J. Mater. Chem. B 2018, 6, 753.
doi: 10.1039/C7TB02924A
Liu, L.; Li, T.; Ruan, Z.; Yan, L. J. Mater. Sci. 2018, 53, 9368.
doi: 10.1007/s10853-018-2276-6
Chen, H.; Bi, Q.; Yao, Y.; Tan, N. J. Mater. Chem. B 2018, 6, 4351.
doi: 10.1039/C8TB00665B
Wang, W.; Wang, L.; Li, Z.; Xie, Z. Chem. Commun. 2016, 52, 5402.
doi: 10.1039/C6CC01048B
Guan, Q.; Zhou, L. L.; Li, Y. A.; Dong, Y. B. Inorg. Chem. 2018, 57, 10137.
doi: 10.1021/acs.inorgchem.8b01316
Liu, Y.; Bhattarai, P.; Dai, Z.; Chen, X. Chem. Soc. Rev. 2019.
Kim, S. H.; Lee, J. E.; Sharker, S. M.; Jeong, J. H.; In, I.; Park, S. Y. Biomacromolecules 2015, 16, 3519.
doi: 10.1021/acs.biomac.5b00944
Liu, Y.; Song, N.; Chen, L.; Liu, S.; Xie, Z. Chem. Asian J. 2018, 13, 989.
doi: 10.1002/asia.201701727
Xu, Y.; Feng, T.; Yang, T.; Wei, H.; Yang, H.; Li, G.; Zhao, M.; Liu, S.; Huang, W.; Zhao, Q. ACS Appl. Mater. Interfaces 2018, 10, 16299.
doi: 10.1021/acsami.8b03568
Zhu, Y.; Lin, W.; Wang, X.; Zhang, W.; Chen, L.; Xie, Z. Chem. Commun. 2018, 54, 11921.
doi: 10.1039/C8CC07106C
Lin, W.; Sun, T.; Xie, Z.; Gu, J.; Jing, X. Chem. Sci. 2016, 7, 1846.
doi: 10.1039/C5SC03707G
Sharker, S. M.; Kang, E. B.; Shin, C. I.; Kim, S. H.; Lee, G.; Park, S. Y. J. Appl. Polym. Sci. 2016, 133.
Kang, E. B.; Lee, J. E.; Jeong, J. H.; Lee, G.; In, I.; Park, S. Y. J. Ind. Eng. Chem. 2016, 33, 336.
doi: 10.1016/j.jiec.2015.10.026
Li, J.; Rao, J.; Pu, K. Biomaterials 2018, 155, 217.
doi: 10.1016/j.biomaterials.2017.11.025
Lyu, Y.; Zeng, J.; Jiang, Y.; Zhen, X.; Wang, T.; Qiu, S.; Lou, X.; Gao, M.; Pu, K. ACS Nano 2018, 12, 1801.
doi: 10.1021/acsnano.7b08616
Zhou, E. Y.; Knox, H. J.; Reinhardt, C. J.; Partipilo, G.; Nilges, M. J.; Chan, J. J. Am. Chem. Soc. 2018, 140, 11686.
doi: 10.1021/jacs.8b05514
Frenette, M.; Hatamimoslehabadi, M.; Bellinger-Buckley, S.; Laoui, S.; La, J.; Bag, S.; Mallidi, S.; Hasan, T.; Bouma, B.; Yelleswarapu, C. J. Am. Chem. Soc. 2014, 136, 15853.
doi: 10.1021/ja508600x
Laoui, S.; Bag, S.; Dantiste, O.; Frenette, M.; Hatamimoslehabadi, M.; Bellinger-Buckley, S.; Tseng, J. C.; Rochford, J.; Yelleswarapu, C. Inter. Soc. Opt. 2014, 89, 5609.
Ni, Y.; Kannadorai, R. K.; Peng, J.; Yu, S. W.; Chang, Y. T.; Wu, J. Chem. Commun. 2016, 52, 11504.
doi: 10.1039/C6CC05126J
Ni, Y.; Kannadorai, R. K.; Yu, S. W.; Chang, Y. T.; Wu, J. Org. Biomol. Chem. 2017, 15, 4531.
doi: 10.1039/C7OB00965H
Chen, Q.; Liu, X.; Chen, J.; Zeng, J.; Cheng, Z.; Liu, Z. Adv. Mater. 2015, 27, 6820.
doi: 10.1002/adma.201503194
Liu, X.; Zhao, M.; Chen, P.; Fan, Q.; Wang, W.; Huang, W. J. Mater. Chem. B 2018, 6, 4531.
doi: 10.1039/C8TB01158C
Miki, K.; Enomoto, A.; Inoue, T.; Nabeshima, T.; Saino, S.; Shimizu, S.; Matsuoka, H.; Ohe, K. Biomacromolecules 2017, 18, 249.
doi: 10.1021/acs.biomac.6b01568
Zhao, M.; Xu, Y.; Xie, M.; Zou, L.; Wang, Z.; Liu, S.; Zhao, Q. Adv. Healthcare Mater. 2018, 7, 1800606.
doi: 10.1002/adhm.201800606
Wang, Q.; Tian, L.; Xu, J.; Xia, B.; Li, J.; Lu, F.; Lu, X.; Wang, W.; Huang, W.; Fan, Q. Chem. Commun. 2018, 54, 10328.
doi: 10.1039/C8CC05560B
Chen, D.; Zhang, J.; Tang, Y.; Huang, X.; Shao, J.; Si, W.; Ji, J.; Zhang, Q.; Huang, W.; Dong, X. J. Mater. Chem. B 2018, 6, 4522.
doi: 10.1039/C8TB01347K
Liu, Y.; Song, N.; Li, Z.; Chen, L.; Xie, Z. Dyes Pigm. 2019, 160, 71.
doi: 10.1016/j.dyepig.2018.07.034
Lu, W. L.; Lan, Y. Q.; Xiao, K. J.; Xu, Q. M.; Qu, L. L.; Chen, Q. Y.; Huang, T.; Gao, J.; Zhao, Y. J. Mater. Chem. B 2017, 5, 1275.
doi: 10.1039/C6TB02575G
Zou, J.; Wang, P.; Wang, Y.; Liu, G.; Zhang, Y.; Zhang, Q.; Shao, J.; Si, W.; Huang, W.; Dong, X. Chem. Sci. 2018.
Ye, S.; Rao, J.; Qiu, S.; Zhao, J.; He, H.; Yan, Z.; Yang, T.; Deng, Y.; Ke, H.; Yang, H.; Zhao, Y.; Guo, Z.; Chen, H. Adv. Mater. 2018, 1801216.
Gawale, Y.; Adarsh, N.; Kalva, S. K.; Joseph, J.; Pramanik, M.; Ramaiah, D.; Sekar, N. Chemistry 2017, 23, 6570.
doi: 10.1002/chem.201605702
Tang, Q.; Si, W.; Huang, C.; Ding, K.; Huang, W.; Chen, P.; Zhang, Q.; Dong, X. J. Mater. Chem. B 2017, 5, 1566.
doi: 10.1039/C6TB02979E
Tang, Q.; Xiao, W.; Huang, C.; Si, W.; Shao, J.; Huang, W.; Chen, P.; Zhang, Q.; Dong, X. Chem. Mater. 2017, 29, 5216.
doi: 10.1021/acs.chemmater.7b01075
Xiao, W.; Wang, P.; Ou, C.; Huang, X.; Tang, Y.; Wu, M.; Si, W.; Shao, J.; Huang, W.; Dong, X. Biomaterials 2018, 183, 1.
doi: 10.1016/j.biomaterials.2018.08.034
Hu, W.; Ma, H.; Hou, B.; Zhao, H.; Ji, Y.; Jiang, R.; Hu, X.; Lu, X.; Zhang, L.; Tang, Y.; Fan, Q.; Huang, W. ACS Appl. Mater. Interfaces 2016, 8, 12039.
doi: 10.1021/acsami.6b02721
Chen, D.; Tang, Q.; Zou, J.; Yang, X.; Huang, W.; Zhang, Q.; Shao, J.; Dong, X. Adv. Healthcare Mater. 2018, 7, 1701272.
doi: 10.1002/adhm.201701272
He, H.; Ji, S.; He, Y.; Zhu, A.; Zou, Y.; Deng, Y.; Ke, H.; Yang, H.; Zhao, Y.; Guo, Z.; Chen, H. Adv. Mater. 2017, 29.
Ramu, V.; Gautam, S.; Garai, A.; Kondaiah, P.; Chakravarty, A. R. Inorg. Chem. 2018, 57, 1717.
doi: 10.1021/acs.inorgchem.7b02249
Wang, X.; Lin, W.; Zhang, W.; Li, C.; Sun, T.; Chen, G.; Xie, Z. J. Colloid Interface Sci. 2018, 536, 208.
Guo, Z.; Zou, Y.; He, H.; Rao, J.; Ji, S.; Cui, X.; Ke, H.; Deng, Y.; Yang, H.; Chen, C.; Zhao, Y.; Chen, H. Adv. Mater. 2016, 28, 10155.
doi: 10.1002/adma.201602738
Zhou, J.; Zhang, Y.; Yu, G.; Crawley, M. R.; Fulong, C. R. P.; Friedman, A. E.; Sengupta, S.; Sun, J.; Li, Q.; Huang, F.; Cook, T. R. J. Am. Chem. Soc. 2018, 140, 7730.
doi: 10.1021/jacs.8b04929
Jiahui CHEN , Tingting ZHENG , Xiuyun ZHANG , Wei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106
Xin Lv , Hongxing Zhang , Kaibo Duan , Wenhui Dai , Zhihui Wen , Wei Guo , Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090
Peng GENG , Guangcan XIANG , Wen ZHANG , Haichuang LAN , Shuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155
Tingting XU , Wenjing ZHANG , Yongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229
Aiai WANG , Lu ZHAO , Yunfeng BAI , Feng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225
Shiyang He , Dandan Chu , Zhixin Pang , Yuhang Du , Jiayi Wang , Yuhong Chen , Yumeng Su , Jianhua Qin , Xiangrong Pan , Zhan Zhou , Jingguo Li , Lufang Ma , Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046
Beitong Zhu , Xiaorui Yang , Lirong Jiang , Tianhong Chen , Shuangfei Wang , Lintao Zeng . A portable and versatile fluorescent platform for high-throughput screening of toxic phosgene, diethyl chlorophosphate and volatile acyl chlorides. Chinese Chemical Letters, 2025, 36(1): 110222-. doi: 10.1016/j.cclet.2024.110222
Qihang Wu , Hui Wen , Wenhai Lin , Tingting Sun , Zhigang Xie . Alkyl chain engineering of boron dipyrromethenes for efficient photodynamic antibacterial treatment. Chinese Chemical Letters, 2024, 35(12): 109692-. doi: 10.1016/j.cclet.2024.109692
Wenjing ZHANG , Xiaoqing WANG , Zhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254
Di WU , Ruimeng SHI , Zhaoyang WANG , Yuehua SHI , Fan YANG , Leyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135
Zhuoya WANG , Le HE , Zhiquan LIN , Yingxi WANG , Ling LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194
Botao QU , Qian WANG , Xiaogang NING , Yuxin ZHOU , Ruiping ZHANG . Deeply penetrating photoacoustic imaging in tumor tissues based on dual-targeted melanin nanoparticle. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1025-1032. doi: 10.11862/CJIC.20230416
Jialiang XU , Jiabin CUI . Recent biological applications of corroles: From diagnosis to therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2303-2317. doi: 10.11862/CJIC.20240245
Lijuan Wang , Yuping Ning , Jian Li , Sha Luo , Xiongfei Luo , Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017
Tianze Wang , Junyi Ren , Dongxiang Zhang , Huan Wang , Jianjun Du , Xin-Dong Jiang , Guiling Wang . Development of functional dye with redshifted absorption based on Knoevenagel condensation at 1-site in phenyl[b]-fused BODIPY. Chinese Chemical Letters, 2024, 35(6): 108862-. doi: 10.1016/j.cclet.2023.108862
Wenjuan Jin , Zelong Chen , Yi Wang , Jiaxuan Li , Jiahui Li , Yuxin Pei , Zhichao Pei . Nano metal-photosensitizer based on Aza-BODIPY-Cu complex for CDT-enhanced dual phototherapy. Chinese Chemical Letters, 2024, 35(7): 109328-. doi: 10.1016/j.cclet.2023.109328
Lulu Cao , Yikun Li , Dongxiang Zhang , Shuai Yue , Rong Shang , Xin-Dong Jiang , Jianjun Du . Engineering aggregates of julolidine-substituted aza-BODIPY nanoparticles for NIR-II photothermal therapy. Chinese Chemical Letters, 2024, 35(12): 109735-. doi: 10.1016/j.cclet.2024.109735
Jian Li , Yu Zhang , Rongrong Yan , Kaiyuan Sun , Xiaoqing Liu , Zishang Liang , Yinan Jiao , Hui Bu , Xin Chen , Jinjin Zhao , Jianlin Shi . 高效靶向示踪钙钛矿纳米系统光电增效抗肿瘤. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-. doi: 10.1016/j.actphy.2024.100042
Leichen Wang , Anqing Mei , Na Li , Xiaohong Ruan , Xu Sun , Yu Cai , Jinjun Shao , Xiaochen Dong . Aza-BODIPY dye with unexpected bromination and high singlet oxygen quantum yield for photoacoustic imaging-guided synergetic photodynamic/photothermal therapy. Chinese Chemical Letters, 2024, 35(6): 108974-. doi: 10.1016/j.cclet.2023.108974
Yan Zhu , Jia Liu , Meiheng Lv , Tingting Wang , Dongxiang Zhang , Rong Shang , Xin-Dong Jiang , Jianjun Du , Guiling Wang . Heavy-atom-free orthogonal configurative dye 1,7-di-anthra-aza-BODIPY for singlet oxygen generation. Chinese Chemical Letters, 2024, 35(10): 109446-. doi: 10.1016/j.cclet.2023.109446
A photosensitizer (PS) can be activated from its ground state to a short-lived excited singlet state (PSEs) by light. Then, either the excited PS may decay back to the ground state by emitting fluorescence, or it can undergo intersystem crossing whereby the spin of its excited electron inverts to form a relatively long-lived triplet state (PSEt). The triplet excited PS can also decay back to the ground state by emitting phosphorescence, but most importantly it can directly interact with surrounding substrates (e.g., cell membrane or other biomolecules) to form radicals, which then react with O2 to produce reactive oxygen species (ROS), such as superoxide anion radicals (O2-), hydroxyl radicals (.OH), and hydrogen peroxides (H2O2, type Ⅰ reaction). Alternatively, the energy of the excited PS can be directly transferred to 3O2 (itself a triplet in the ground state) to form 1O2 (type Ⅱ reaction)[6]
D-PSM and fluorescent polymeric composite C/B-PgP anchored rGO/[PEDOT: D-PSM]: C/B-PgP