Citation:
Wang Wanjun, Li Huan, Pan Renming, Zhu Weihua. Molecular Design of High Energy Density Materials with Bis(3, 4, 5-substituted-pyrazolyl)methane Derivatives[J]. Chinese Journal of Organic Chemistry,
;2019, 39(5): 1362-1371.
doi:
10.6023/cjoc201812001
-
A series of bis(3, 4, 5-substituted pyrazolyl)methane derivatives were designed as candidates of high energy density materials (HEDMs). The heats of formation (HOFs), electronic structure, energetic properties and thermal stabilities were studied using density functional theory (DFT) method. The difluoroamino groups could increase energy gaps of electronic structure, density and detonation properties among the title compounds. Bis[3, 5-bis(difluoroamino)-4-nitropyrazolyl]methane (C2) had excellent properties of potential HEDM. Its crystal density (ρ, 2.11 g/cm3) and impact sensitivity (h50, 6.8 J) were even higher than those of hexanitrohexaazaisowurtzitane (CL-20), meanwhile its detonation velocity (D, 9.80 km/s) and detonation pressure (P, 46.62 GPa) were very close to CL-20.
-
-
-
[1]
Fried, L. E.; Manaa, M. R.; Pagoria, P. F.; Simpson, R. L. Annu. Rev. Mater. Res. 2001, 31, 291. doi: 10.1146/annurev.matsci.31.1.291
-
[2]
Strout, D. L. J. Phys. Chem. A 2004, 108, 10911.
-
[3]
Nguyen, M. T. Coord. Chem. Rev. 2003, 244, 93. doi: 10.1016/S0010-8545(03)00101-2
-
[4]
Xu, X. J.; Xiao, H. M.; Ju, X. H.; Gong, X. D.; Zhu, W. H. J. Phys. Chem. A 2006, 110, 5929. doi: 10.1021/jp0575557
-
[5]
Rice, B. M.; Byrd, E. F. C.; Mattson, W. D. Struct. Bonding (Berlin) 2007, 125, 85. doi: 10.1007/978-3-540-72202-1
-
[6]
Klap tke, T. M. Struct. Bonding (Berlin) 2007, 125, 153. doi: 10.1007/978-3-540-72202-1
-
[7]
Benson, F. R. The High Nitrogen Compounds, Wiley-Interscience, New York, 1984.
-
[8]
Huynh, M. H. V.; Hiskey, M. A.; Archuleta, J. G.; Roemer, E. L.; Gilardi, R. Angew Chem., Int. Ed. 2001, 43, 5658.
-
[9]
Zhou, Y.; Long, X. P.; Wang, X.; Shu, Y. J.; Tian, A. M. Chin. J. Energ. Mater. 2006, 14, 315(in Chinese). doi: 10.3969/j.issn.1006-9941.2006.04.020
-
[10]
Lei, Y. P.; Xu, S. L.; Yang, S. Q. Chem. Propell. Polym. Mater. 2007, 5, 1(in Chinese).
-
[11]
Neutz, J.; Grosshardt, O.; Schaufele, S.; Schuppler, H.; Schweikert, W. Propellants, Explos., Pyrotech. 2003, 28, 181. doi: 10.1002/(ISSN)1521-4087
-
[12]
Huynh, M. H. V.; Hiskey, M. A.; Hartline, E. L.; Montoya, D. P.; Gilardi, R. Angew. Chem., Int. Ed. 2004, 43, 4924. doi: 10.1002/(ISSN)1521-3773
-
[13]
Yu, Z. Y.; Chen, B. H.; Yu, J. Y.; Li, W. J. Chin. J. Energ. Mater. 2004, 12, 34(in Chinese). doi: 10.3969/j.issn.1006-9941.2004.01.009
-
[14]
Qiu, L.; Xiao, H. M.; Zhu, W. H.; Ju, X. H.; Gong, X. D. Chin. J. Chem. 2006, 24, 1538. doi: 10.1002/(ISSN)1614-7065
-
[15]
Chavez, D. E.; Hiskey, M. A.; Gilardi, R. D. Angew. Chem., Int. Ed. 2000, 39, 1791. doi: 10.1002/(SICI)1521-3773(20000515)39:10<1791::AID-ANIE1791>3.0.CO;2-9
-
[16]
Kerth, J.; Lobbecke, S. Propellants, Explos., Pyrotech. 2002, 27, 111. doi: 10.1002/1521-4087(200206)27:3<111::AID-PREP111>3.0.CO;2-O
-
[17]
Zhang, W. Q.; Zhang, J. H.; Deng, M. C.; Qi, X. J.; Nie, F. D.; Zhang, Q. H. Nat. Commun. 2017, 8, 181. doi: 10.1038/s41467-017-00286-0
-
[18]
Wang, Y.; Liu, Y. J. Song, S. W.; Yang, Z. J.; Qi, X. J.; Wang, K. C.; Liu, Y.; Zhang, Q. H.; Tian, Y. Nat. Commun. 2018, 9, 2444. doi: 10.1038/s41467-018-04897-z
-
[19]
Hervé, G.; Roussel, C.; Graindorge, H. Angew. Chem., Int. Ed. 2010, 49, 3177. doi: 10.1002/anie.v49:18
-
[20]
Li, Y. F.; Fan, X. W.; Wang, Z. Y.; Ju, X. H. J. Mol. Struc.: THEOCHEM 2009, 896, 96. doi: 10.1016/j.theochem.2008.11.004
-
[21]
Ravi, P.; Gore, G. M.; Tewari, S. P.; Sikder, A. K. Int. J. Quantum Chem. 2011, 111, 4352. doi: 10.1002/qua.22976
-
[22]
Ravi, P.; Gore, G. M.; Sikder, A. K.; Tewari, S. P. Int. J. Quantum Chem. 2012, 112, 1667. doi: 10.1002/qua.v112.6
-
[23]
Ravi, P.; Gore, G. M.; Tewari, S. P.; Sikder, A. K. Mol. Simulat. 2012, 38, 218. doi: 10.1080/08927022.2011.614242
-
[24]
Yin, P.; Parrish, D. A.; Shreeve, J. M. J. Am. Chem. Soc. 2015, 137, 4778. doi: 10.1021/jacs.5b00714
-
[25]
Ravi, P.; Gore, G. M.; Tewari, S. P.; Sikder, A. K. Propell. Explos. Pyrot. 2012, 37, 52. doi: 10.1002/prep.v37.1
-
[26]
Wang, Y. L.; Zhao, F. Q.; Ji, Y. P.; Pan, Q.; Yi, J. H.; An, T.; Wang, W.; Yu, T.; Lu, X. M. J. Anal. Appl. Pyrol. 2012, 98, 231. doi: 10.1016/j.jaap.2012.08.014
-
[27]
Ravi, P.; Gore, G. M.; Venkatesan, V.; Tewari, S. P.; Sikder, A. K. J. Hazard. Mater. 2010, 183, 859. doi: 10.1016/j.jhazmat.2010.07.106
-
[28]
Yin, P.; Mitchell, L. A.; Parrish, D. A.; Shreeve, J. M. Chem. Asian J. 2017, 12, 378. doi: 10.1002/asia.v12.3
-
[29]
He, C.; Zhang, J.; Parrish, D. A.; Shreeve, J. M. J. Mater. Chem. A 2013, 1, 2863. doi: 10.1039/c2ta01359b
-
[30]
Kumar, D.; Imler, G. H.; Parrish, D. A.; Shreeve, J. M. Chem. Eur. J. 2017, 23, 7876. doi: 10.1002/chem.201700786
-
[31]
Yin, P.; Zhang, J.; Parrish, D. A.; Shreeve, J. M. Chem. Eur. J. 2014, 20, 16529. doi: 10.1002/chem.201404991
-
[32]
Zhang, Y.; Parrish, D. A.; Shreeve, J. M. J. Mater. Chem. 2012, 22, 12659. doi: 10.1039/c2jm31535a
-
[33]
Fischer, D.; Gottfried, J. L.; Klap tke, T. M.; Karaghiosoff, K.; Stierstorfer, J.; Witkowski, T. G. Angew. Chem., Int. Ed. 2016, 55, 16132. doi: 10.1002/anie.201609267
-
[34]
Wu, Q.; Zhu, W. H.; Xiao, H. M. J. Mol. Model. 2013, 19, 2945. doi: 10.1007/s00894-013-1825-9
-
[35]
Pan, Y.; Li, J. S.; Cheng, B. B.; Zhu, W. H.; Xiao, H. M. Comput. Theor. Chem. 2012, 992, 110. doi: 10.1016/j.comptc.2012.05.013
-
[36]
Wu, Q.; Pan, Y.; Zhu, W. H.; Xiao, H. M. J. Mol. Model. 2013, 19, 1853. doi: 10.1007/s00894-013-1756-5
-
[37]
Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B:Matter Mater. Phys. 1988, 37, 785. doi: 10.1103/PhysRevB.37.785
-
[38]
Frisch, M. J.; Pople, J. A.; Binkley, J. S. J. Chem. Phys. 1984, 80, 3265. doi: 10.1063/1.447079
-
[39]
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford CT, 2010.
-
[40]
Lu, T.; Chen, F. J. Comput. Chem. 2012, 33, 580. doi: 10.1002/jcc.v33.5
-
[41]
Muthurajan, H.; Sivabalan, R.; Talawar, M. B.; Anniyappan, M.; Venugopalan, S. J. Hazard. Mater. 2006, 133, 30. doi: 10.1016/j.jhazmat.2005.10.009
-
[42]
Chen, Z. X.; Xiao, J. M.; Xiao, H. M.; Chiu, Y. N. J. Phys. Chem. A 1999, 103, 8062. doi: 10.1021/jp9903209
-
[43]
Ju, X. H.; Li, Y. M.; Xiao, H. M. J. Phys. Chem. A 2005, 109, 934. doi: 10.1021/jp045071p
-
[44]
Ju, X. H.; Wang, X.; Bei, F. L. J. Comput. Chem. 2005, 26, 1263. doi: 10.1002/(ISSN)1096-987X
-
[45]
Curtiss, L. A.; Raghavachari, K.; Trucks, G. W.; Pople, J. A. J. Chem. Phys. 1991, 94, 7221. doi: 10.1063/1.460205
-
[46]
Curtiss, L. A.; Carpenter, J. E.; Raghavachari, K.; Pople, J. A. J. Chem. Phys. 1992, 96, 9030. doi: 10.1063/1.462261
-
[47]
Atkins, P. W. Physical Chemistry, Oxford University Press, Oxford, 1982.
-
[48]
Politzer, P.; Murry, J. S.; Grice, M. E.; DeSalvo, M.; Miller, E. Mol. Phys. 1997, 91, 923. doi: 10.1080/002689797171030
-
[49]
Politzer, P.; Murry, J. S. Cent. Eur. J. Energy Mater. 2011, 8, 209.
-
[50]
Byrd, E. F. C.; Rice, B. M. J. Phys. Chem. A 2006, 110, 1005. doi: 10.1021/jp0536192
-
[51]
Kamlet, M. J.; Jacobs, S. T. J. Chem. Phys. 1968, 48, 23. doi: 10.1063/1.1667908
-
[52]
Politzer, P.; Martines, J.; Murry, J. S.; Concha, M. C.; Toro-Labbé, A. Mol. Phys. 2009, 107, 2095. doi: 10.1080/00268970903156306
-
[53]
Pospíšil, M.; Vávra, P.; Concha, M. C.; Murry, J. S.; Politzer, P. J. Mol. Model. 2010, 16, 895. doi: 10.1007/s00894-009-0587-x
-
[54]
Benson, S. W. Thermochemical Kinetic, 2nd ed., Weily Interscience, New York, 1976.
-
[55]
Mills, I.; Cvitas, T.; Homann, K.; Kallay, N.; Kuchitsu, K. Quantities, Units, and Symbols in Physical Chemistry, Blackwell Scientific Publications, Oxford, 1988.
-
[56]
Blanksby, S. J.; Ellison, G. B. Acc. Chem. Res. 2003, 36, 255. doi: 10.1021/ar020230d
-
[57]
Scott, A. P.; Radom, L. J. Phys. Chem. 1996, 100, 16502. doi: 10.1021/jp960976r
-
[58]
Dean, J. A. LANGE's Handbook of Chemistry, 15th ed., Chapter 6, McGraw-Hill Book Co., New York, 1999.
-
[59]
Dean, J. A. LANGE's Handbook of Chemistry, 13th ed., Chapter 9, McGraw-Hill Book Co., New York, 1985.
-
[60]
Shen, C.; Wang, P.; Lu, M. J. Phys. Chem. A 2015, 119, 8250. doi: 10.1021/acs.jpca.5b04969
-
[1]
-
-
-
[1]
Zhengkun QIN , Zicong PAN , Hui TIAN , Wanyi ZHANG , Mingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429
-
[2]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[3]
Haifeng ZHENG , Xingzhe GUO , Yunwei WEI , Xinfang WANG , Huimin QI , Yuting YAN , Jie ZHANG , Bingwen LI . Post-synthetic modification strategy to construct Co-MOF composites for boosting oxygen evolution reaction activity. Chinese Journal of Inorganic Chemistry, 2026, 42(1): 193-202. doi: 10.11862/CJIC.20250029
-
[4]
Qingyun Hu , Wei Wang , Junyuan Lu , He Zhu , Qi Liu , Yang Ren , Hong Wang , Jian Hui . High-throughput screening of high energy density LiMn1-xFexPO4 via active learning. Chinese Chemical Letters, 2025, 36(2): 110344-. doi: 10.1016/j.cclet.2024.110344
-
[5]
Dixing Ni , Jiarui Qi , Zhi Deng , Dong Ding , Rui Wang , Wenjie Zhou , Sisi Zhou , Yang Sun , Shuai Li , Zhaoxiang Wang . Voltage design and transport channel optimization of anti-perovskite cathode materials: A density functional theory study. Chinese Chemical Letters, 2025, 36(12): 110683-. doi: 10.1016/j.cclet.2024.110683
-
[6]
Xu Huang , Kai-Yin Wu , Chao Su , Lei Yang , Bei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720
-
[7]
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
-
[8]
Xinyu Ren , Hong Liu , Jingang Wang , Jiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282
-
[9]
Lu Li , Jianing Shen , Qinkun Xiao , Chaozheng He , Jinzhou Zheng , Chaoqin Chu , Chen Chen . Stable crystal structure prediction using machine learning-based formation energy and empirical potential function. Chinese Chemical Letters, 2025, 36(11): 110421-. doi: 10.1016/j.cclet.2024.110421
-
[10]
Shunshun Jiang , Ji Zhang , Jing Wang , Shan-Tao Zhang . Excellent energy storage properties in non-stoichiometric Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics. Chinese Chemical Letters, 2024, 35(7): 108955-. doi: 10.1016/j.cclet.2023.108955
-
[11]
Renshu Huang , Jinli Chen , Xingfa Chen , Tianqi Yu , Huyi Yu , Kaien Li , Bin Li , Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171
-
[12]
Run Chai , Qiujie Wu , Yongchao Liu , Xiaohui Song , Xuyong Feng , Yi Sun , Hongfa Xiang . A 3D dual layer host with enhanced sodiophilicity as stable anode for high-energy sodium metal batteries. Chinese Chemical Letters, 2025, 36(6): 110007-. doi: 10.1016/j.cclet.2024.110007
-
[13]
Huyi Yu , Renshu Huang , Qian Liu , Xingfa Chen , Tianqi Yu , Haiquan Wang , Xincheng Liang , Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253
-
[14]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[15]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[16]
Yupeng TANG , Haiying YANG , Fan JIN , Nan LI . Hydrogen storage properties of C6S6Li6: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1827-1839. doi: 10.11862/CJIC.20240460
-
[17]
Shan-Qing Yang , Lu-Lu Wang , Rajamani Krishna , Bo Xing , Lei Zhou , Fei-Yang Zhang , Qiang Zhang , Yi-Long Li , Chao-Sheng Bao , Tong-Liang Hu . Efficient C3H6/C3H8 separation within a bifunctional ultramicroporous metal-organic framework with high purity and record packing density. Chinese Chemical Letters, 2025, 36(12): 110556-. doi: 10.1016/j.cclet.2024.110556
-
[18]
Yunfei Shen , Long Chen . Gradient imprinted Zn metal anodes assist dendrites-free at high current density/capacity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100321-100321. doi: 10.1016/j.cjsc.2024.100321
-
[19]
Zhilong Xie , Guohui Zhang , Ya Meng , Yefei Tong , Jian Deng , Honghui Li , Qingqing Ma , Shisong Han , Wenjun Ni . A natural nano-platform: Advances in drug delivery system with recombinant high-density lipoprotein. Chinese Chemical Letters, 2024, 35(11): 109584-. doi: 10.1016/j.cclet.2024.109584
-
[20]
Shuangliang Xie , Yuyue Chen , Qing He , Liang Chen , Jikun Yang , Shiqing Deng , Yimei Zhu , He Qi . Relaxor antiferroelectric-relaxor ferroelectric crossover in NaNbO3-based lead-free ceramics for high-efficiency large-capacitive energy storage. Chinese Chemical Letters, 2024, 35(7): 108871-. doi: 10.1016/j.cclet.2023.108871
-
[1]
Metrics
- PDF Downloads(4)
- Abstract views(1354)
- HTML views(218)
Login In
DownLoad: