Citation: Yang Ziqi, Liu Xingkun, Jiang Lu'nan, Wang Mei. Design, Synthesis and Application of Fluorescence Resonance Energy Transfer-Based Ratiometric Hydrazine Fluorescent Probe[J]. Chinese Journal of Organic Chemistry, ;2019, 39(5): 1483-1488. doi: 10.6023/cjoc201811034 shu

Design, Synthesis and Application of Fluorescence Resonance Energy Transfer-Based Ratiometric Hydrazine Fluorescent Probe

  • Corresponding author: Wang Mei, wangmarian@163.com
  • Received Date: 28 November 2018
    Revised Date: 7 January 2019
    Available Online: 18 May 2019

    Fund Project: the Science Technology Research and Development Guidance Programme Project of Baoding City 16zg031the Natural Science Foundation of Hebei Provience 2018201234the Science Technology Research and Development Guidance Programme Project of Baoding City 18ZF315Project supported by the National Natural Scinec Foundation of China (No. 51578067), the Natural Science Foundation of Hebei Provience (No. 2018201234), the Colleges and Universities Science Technology Research Project of Hebei Province (No. QN2017015) and the Science Technology Research and Development Guidance Programme Project of Baoding City (Nos. 16zg031, 18ZF315)the Colleges and Universities Science Technology Research Project of Hebei Province QN2017015the National Natural Scinec Foundation of China 51578067

Figures(6)

  • Hydrazine (N2H4) is a highly toxic biochemical reagent with the capability of mutagenic, teratogenic and carcinogenic. For accurately monitoring the concentration of N2H4 in the environment and life, two FRET (fluorescence resonance energy transfer)-based dual-emissive ratiometric fluorescent probes (FRET-1/2) were designed and synthesized. The structures of both probes were charactered by 1H NMR, 13C NMR and HRMS. The results prove that both probes exhibit good selectivity and sensitivity to N2H4 and can be used for detecting N2H4 in water samples.
  • 加载中
    1. [1]

      (a) Rosca, V.; Koper, Marc T. M. Electrochim. Acta 2008, 53, 5199.
      (b) Khaled, K. F. Appl. Surf. Sci. 2006, 252, 4120.
      (c) Kean, T.; Miller, J. H. M.; Skellern, G. G.; Snodin, D. Pharmeur. Sci. Notes 2006, 2006, 23.

    2. [2]

      (a) Serov, A.; Kwak, C. Appl. Catal., B 2010, 98, 1.
      (b) Garrod, S.; Bollard, M. E.; Nicholls A. W.; Connor, S. C.; Connelly, J.; Nicholson, J. K.; Holmes, E. Chem. Res. Toxicol. 2005, 18, 115.

    3. [3]

      U.S. Environmental Protection Agency (EPA) Integrated Risk Information System (IRIS) on Hydrazine/Hydrazine Shlfate National Center for Environmental Assessment, Office of Research and Development, Washington, DC, 1999.

    4. [4]

      Lei, B. F.; Wei, C.-J.; Tu, S.-C. J. Biol. Chem. 2000, 275, 2520.  doi: 10.1074/jbc.275.4.2520

    5. [5]

      (a) Chen, X.; Wang, F.; Hyun, J. Y.; Wei, T.; Qiang, J.; Ren, X. Chem. Soc. Rev. 2016, 45, 2976.
      (b) He, X.-P.; Hu, X.-L.; James, T. D.; Yoon, J.; Tian, H. Chem. Soc. Rev. 2017, 46, 6687.
      (c) Wu, D.; Sedgwick, A. C.; Gunnlaugsson, T.; Akkaya, E. U.; Yoon, J.; James, T. D. Chem. Soc. Rev. 2017, 46, 7105.
      (d) Sedgwick, A. C.; Wu, L.; Han, H-H.; Bull, S. D.; He, X-P.; James, T. D. Chem. Soc. Rev. 2018, 47, 8842.

    6. [6]

      Cui, L.; Ji, C. F.; Peng, Z. X.; Zhong, L.; Zhou, C. H.; Yan, L. L.; Qu, S.; Zhang, S. P.; Huang, C.; Qian, X. H.; Xu, Y. F. Anal. Chem. 2014, 86, 4611.  doi: 10.1021/ac5007552

    7. [7]

      Cui, L.; Peng, Z. X.; Ji, C. F.; Huang, D. T.; Ma, J.; Zhang, S. P.; Qian, X. H.; Xu, Y. F. Chem. Commun. 2014, 50, 1485.  doi: 10.1039/C3CC48304E

    8. [8]

      Qian, Y.; Lin, J.; Han, L. J.; Lin, L.; Zhu, H. L. Biosens. Bioelectron. 2014, 58, 282.  doi: 10.1016/j.bios.2014.02.059

    9. [9]

      Zhang, J. J.; Ning, L. L.; Liu, J. T.; Wang, J. X.; Yu, B. F.; Liu, X. Y.; Yao, X. J.; Zhang, Z. P.; Zhang, H. X. Anal. Chem. 2015, 87, 9101.  doi: 10.1021/acs.analchem.5b02527

    10. [10]

      Firoj, A.; Anila, H. A.; Andaraj, T.; Mogare, D. G.; Samit, C.; Amitava, D. Chem. Commun. 2016, 52, 6166.  doi: 10.1039/C6CC01787H

    11. [11]

      Tang, T.; Chen, Y. Q.; Fu, B. S.; He, Z. Y.; Xiao, H.; Wu, F.; Wang, J. Q.; Wang, S. R.; Zhou, X. Chin. Chem. Lett. 2016, 27, 540.  doi: 10.1016/j.cclet.2016.01.024

    12. [12]

      Zhai, Q. S.; Feng, W. Y.; Feng, G. Q. Anal. Methods 2016, 8, 5832.  doi: 10.1039/C6AY01367H

    13. [13]

      Chen, W.; Liu, W.; Liu, X. J.; Kuang, Y. Q.; Yu, R. Q.; Jiang, J. H. Talanta 2017, 162, 225.  doi: 10.1016/j.talanta.2016.10.026

    14. [14]

      Li, B.; He, Z. S.; Zhou, H.; Zhang, H. H.; Liu, G. H. Dyes Pigm. 2017, 146, 300.  doi: 10.1016/j.dyepig.2017.07.023

    15. [15]

      Lu, Z. L.; Fan, W. L.; Shi, X. M.; Lu, Y. Y.; Fan, C. H. Anal. Chem. 2017, 89, 9918.

    16. [16]

      Ma, J. H.; Fan, J. L.; Li, H. D.; Yao, Q. C.; Xia, J.; Wang, J. Y.; Peng, X. J. Dyes Pigm. 2017, 138, 39.  doi: 10.1016/j.dyepig.2016.11.026

    17. [17]

      Liu, C. T.; Wang, F.; Xiao, T.; Chi, B.; Wu, Y. H.; Zhu, D. R.; Chen, X. Q. Sens. Actuator, B 2018, 256, 55.  doi: 10.1016/j.snb.2017.09.198

    18. [18]

      Wang, S.; Ma, S. Y.; Zhang, J. D.; Sheng, M, Y.; Liu, P.; Zhang, S. Y.; Li, J. L. Sens. Actuator, B 2018, 261, 418.  doi: 10.1016/j.snb.2018.01.126

    19. [19]

      Fan, J. L.; Sun, W.; Hu, M. M.; Cao, J. F.; Cheng, G. H.; Dong, H. J.; Song, K. D.; Liu, Y. C.; Sun, S. G.; Peng, X. J. Chem. Commun. 2012, 48, 8117.  doi: 10.1039/c2cc34168a

    20. [20]

      Hu, C.; Sun, W.; Cao, J. F.; Gao, P.; Wang, J. Y.; Fan, J. L.; Song, F. L.; Sun, S. G.; Peng, X. J. Org. Lett. 2013, 15, 4022.  doi: 10.1021/ol401838p

    21. [21]

      Sun, Y.; Zhao, D.; Fan, S. W.; Duan, L. Sens. Actuator, B 2015, 208, 512.  doi: 10.1016/j.snb.2014.11.057

    22. [22]

      Dai, X.; Wang, Z-Y.; Du, Z-F.; Miao, J-Y.; Zhao, B-X. Sens. Actuator, B 2016, 232, 369.  doi: 10.1016/j.snb.2016.03.159

    23. [23]

      Xia, X. T.; Zeng, F.; Zhang, P. S.; Lyu, J.; Huang, Y.; Wu, S. Z. Sens. Actuator, B 2016, 227, 411.  doi: 10.1016/j.snb.2015.12.046

    24. [24]

      Yang, X. P.; Liu, Y. X.; Wu, X, L.; Zhang, D.; Ye, Y. Sens. Actuator, B 2017, 253, 488.  doi: 10.1016/j.snb.2017.06.165

    25. [25]

      Xu, H.; Gu, B. A.; Li, Y. Q.; Huang, Z.; Su, W.; Duan, X. L.; Yin, P.; Li, H. T.; Yao, S. Z. Talanta 2018, 180, 199.  doi: 10.1016/j.talanta.2017.12.039

    26. [26]

      Xiao, L. L.; Tu, J.; Sun, S. G.; Pei, Z. C.; Pei, T. X.; Pang, Y.; Xu, Y. Q. RSC Adv. 2014, 4, 41807.  doi: 10.1039/C4RA08101C

    27. [27]

      Zhang, Y.; Liu, J. F.; Yi, R. H.; Ai, S. F.; Cheng, H. R.; Jia, W. Z. Chin. J. Anal. Chem. 2018, 46, 511 (in Chinese).  doi: 10.11895/j.issn.0253-3820.171222

    28. [28]

      Ju, Z. Y.; Shu, P. H.; Xie, Z. Y.; Jiang, Y. Q.; Tao, W. J.; Xu, Z. H. Chin. J. Org. Chem. 2019, 39, 697 (in Chinese).
       

    29. [29]

      Zhai, Q. S.; Yang, S. J.; Fang, Y. L.; Zhang, H. Y.; Feng, G. Q. RSC Adv. 2015, 5, 94216.  doi: 10.1039/C5RA18977B

    30. [30]

      Ding, S. S.; Zhang, Q.; Xue, S. H.; Feng, G. Q. Analyst 2015, 140, 4687.  doi: 10.1039/C5AN00465A

    31. [31]

      Li, M. X.; Feng, W. Y.; Zhang, H. Y.; Feng, G. Q. Sens. Actuator, B 2017, 243, 51.  doi: 10.1016/j.snb.2016.11.132

    32. [32]

      Feng, W. Y.; Hong, J. X.; Weiyong Feng, Feng, G. Q. Sens. Actuator, B 2017, 251, 389.  doi: 10.1016/j.snb.2017.05.099

    33. [33]

      Feng, W. Y.; Bai, L. Y.; Jia, S. W.; Geng, G. Q. Sens. Actuator, B 2018, 260, 554.  doi: 10.1016/j.snb.2017.12.172

    34. [34]

      Ma. C.; Wei, C.; Li, X. Y.; Zheng, X. Y.; Chen, B.; Wang, M.; Zhang, P. Z.; Li, X. L. Dyes Pigm. 2019, 162, 624.  doi: 10.1016/j.dyepig.2018.10.072

  • 加载中
    1. [1]

      Yingpeng ZHANGXingxing LIYunshang YANGZhidong TENG . A pyrazole-based turn-off fluorescent probe for visual detection of hydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1301-1308. doi: 10.11862/CJIC.20250064

    2. [2]

      Yuting DUJing YUANPeiyao DENG . Synthesis and application of a fluorescent probe for the detection of reduced glutathione. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1331-1337. doi: 10.11862/CJIC.20240461

    3. [3]

      Qiang HUZhiqi CHENZhong CHENXu WANGWeina WU . Pyridinium-chalcone-based ClO- fluorescent probe: Preparation and biological imaging applications. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1789-1795. doi: 10.11862/CJIC.20250086

    4. [4]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    5. [5]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    6. [6]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    7. [7]

      Pengli GUANRenhu BAIXiuling SUNBin LIU . Trianiline-derived aggregation-induced emission luminogen probe for lipase detection and cell imaging. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1817-1826. doi: 10.11862/CJIC.20250058

    8. [8]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    9. [9]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    10. [10]

      Mi Wen Baoshuo Jia Yongqi Chai Tong Wang Jianbo Liu Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147

    11. [11]

      Benhua Wang Chaoyi Yao Yiming Li Qing Liu Minhuan Lan Guipeng Yu Yiming Luo Xiangzhi Song . 一种基于香豆素氟离子荧光探针的合成、表征及性能测试——“科研反哺教学”在有机化学综合实验教学中的探索与实践. University Chemistry, 2025, 40(6): 201-209. doi: 10.12461/PKU.DXHX202408070

    12. [12]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    13. [13]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    14. [14]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    15. [15]

      Zhifeng CAIYing WUYanan LIGuiyu MENGTianyu MIAOYihao ZHANG . Effective detection of malachite green by folic acid stabilized silver nanoclusters. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 983-993. doi: 10.11862/CJIC.20240394

    16. [16]

      Wei GAOMeiqi SONGXuan RENJianliang BAIJing SUJianlong MAZhijun WANG . A self-calibrating fluorescent probe for the selective detection and bioimaging of HClO. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1173-1182. doi: 10.11862/CJIC.20250112

    17. [17]

      Lei ZHANGCheng HEYang JIAO . An azo-based fluorescent probe for the detection of hypoxic tumor cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1162-1172. doi: 10.11862/CJIC.20250081

    18. [18]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    19. [19]

      Xinyu Liu Weiran Hu Zhengkai Li Wei Ji Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021

    20. [20]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

Metrics
  • PDF Downloads(12)
  • Abstract views(1905)
  • HTML views(411)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return