Citation: Liang Ling, Mou Jialing, Chen Yue, Wang Mengsha, Hong Zhi. An Efficient Synthesis of Oxime Compounds Catalyzed by Superfine Kaolin under Microwave Irradiation[J]. Chinese Journal of Organic Chemistry, ;2019, 39(5): 1323-1332. doi: 10.6023/cjoc201811021 shu

An Efficient Synthesis of Oxime Compounds Catalyzed by Superfine Kaolin under Microwave Irradiation

  • Corresponding author: Hong Zhi, zhihong@tzc.edu.cn
  • Received Date: 17 November 2018
    Revised Date: 13 February 2019
    Available Online: 29 May 2019

    Fund Project: Project supported by the Basic Public Research Project of Zhejiang Province (No. LGG18B020002)the Basic Public Research Project of Zhejiang Province LGG18B020002

Figures(2)

  • Oxime compounds were efficiently synthesized with aromatic or aliphatic ketones and hydroxylamine hydrochloride as raw materials in the PEG-400 solution, using cheap and readily available superfine kaolin as catalyst under microwave irradiation condition. The effects of the catalyst, the solvent type, reaction time, reaction temperature on the reaction were investigated. The structures of the products were detected by melting point, nuclear magnetic resonance, infrared spectroscopy and mass spectrometry data. This method has the advantages of short reaction times (5~15 min), good yields, and simple operation as well as environmental friendliness. In addition, the preliminary experiment shows that superfine kaolin could also catalyze transoximation reaction and preparation of oxime ether compounds under microwave irradiation with the yields of 42%~67% and 59%~72%.
  • 加载中
    1. [1]

      Bolotin, D. S.; Bokach, N. A.; Demakova, M. Y.; Kukushkin, V. Y. Chem. Rev. 2017, 117, 13039.  doi: 10.1021/acs.chemrev.7b00264

    2. [2]

      Ran, L. F.; Liang, H.; Guan, Z. H. Chin. J. Org. Chem. 2013, 33, 66 (in Chinese).
       

    3. [3]

      Watson, K. G. Aust. J. Chem. 2011, 64, 367.  doi: 10.1071/CH10366

    4. [4]

      Kolesnikov, A. M.; Yuidin, M. A.; Nikiforov, A. S.; Ivanov, I. M.; Vengerovich, N. G.; Makacheev, A. S. Bull. Exp. Biol. Med. 2018, 164, 624.  doi: 10.1007/s10517-018-4046-5

    5. [5]

      Wang, X. B.; Chen, M. H.; Li, Q.; Zhang, J. P.; Ruan, X. H.; Xie, Y.; Xue, W. Chem. Pap. 2017, 71, 1225.  doi: 10.1007/s11696-016-0116-1

    6. [6]

      Canario, C.; Silvestre, S.; Falcao, A.; Alves, G. Curr. Med. Chem. 2018, 25, 660.

    7. [7]

      Patil, V. V.; Gayakwad, E. M.; Shankarling, G. S. J. Org. Chem. 2016, 81, 781.  doi: 10.1021/acs.joc.5b01740

    8. [8]

      Liu, S. H.; Hao, F.; Liu, P. L.; Luo, H. A. RSC Adv. 2015, 5, 22863.  doi: 10.1039/C5RA01318F

    9. [9]

      Reddy, M. K.; Mallik, S.; Ramakrishna, I.; Baidya, M. Org. Lett. 2017, 19, 1694.  doi: 10.1021/acs.orglett.7b00482

    10. [10]

      Hong, Z.; Li, J. J.; Chen, G.; Jiang, H. J.; Yang, X. F.; Pan, H.; Su, W. K. RSC Adv. 2016, 6, 13581.  doi: 10.1039/C5RA23606A

    11. [11]

      Sathyanarayana, P.; Upare, A.; Ravi, O.; Muktapuram, P. R.; Bathula, S. R. RSC Adv. 2016, 6, 22749.  doi: 10.1039/C6RA02962K

    12. [12]

      Bezlada, A.; Szewczyk, M.; Mlynarski, J. J. Org. Chem. 2016, 81, 336.  doi: 10.1021/acs.joc.5b02613

    13. [13]

      Xu, Y. Y.; Yang, Q. S.; Li, Z. H.; Gao, L. Y.; Zhang, D. S.; Wang, S. F.; Zhao, X. Q.; Wang, Y. J. Chem. Eng. Sci. 2016, 152, 717.  doi: 10.1016/j.ces.2016.06.068

    14. [14]

      Lin, C. K.; Cheng, L. W.; Li, H. Y.; Yun, W. Y.; Cheng, W. C. Org. Biomol. Chem. 2015, 13, 2100.  doi: 10.1039/C4OB01934B

    15. [15]

      Xie, F. K.; Du, C.; Pang, Y. D.; Lian, X.; Xue, C. T.; Chen, Y. Y.; Wang, X. F.; Cheng, M. S.; Guo, C.; Lin, B.; Liu, Y. X. Tetrahedron Lett. 2016, 57, 5820.  doi: 10.1016/j.tetlet.2016.11.054

    16. [16]

      Peterson, K. E.; Cinelli, M. A.; Morrell, A. E.; Mehta, A.; Dexheimer, T. S.; Agama, K.; Antony, S.; Pommier, Y.; Cushman, M. J. Med. Chem. 2011, 54, 4937.  doi: 10.1021/jm101338z

    17. [17]

      Eshghi, H.; Hassankhani, A. Org. Prep. Proced. Int. 2005, 37, 575.  doi: 10.1080/00304940509354989

    18. [18]

      Sharghi, H.; Sarvari, M. H. Synlett 2001, 1, 99.

    19. [19]

      Yao, Q. C.; Fan, L.; Liu, L.; Huang, Y. M.; Cui, J. G. Chem. Res. Appl. 2013, 25, 220 (in Chinese).  doi: 10.3969/j.issn.1004-1656.2013.02.016

    20. [20]

      Noverges, B.; Mollar, C.; Medio-Simón, M.; Asensio, G. Adv. Synth. Catal. 2013, 355, 2327.  doi: 10.1002/adsc.201300444

    21. [21]

      Manetti, F.; Magnani, M.; Castagnolo, D.; Passalacqua, L.; Botta, M.; Corelli, F.; Saddi, M.; Deidda, D.; De Logu, A. ChemMedChem 2006, 1, 973.  doi: 10.1002/(ISSN)1860-7187

    22. [22]

      Ghozlojeh, N. P.; Setamdideh, D. Orient. J. Chem. 2015, 31, 1823.  doi: 10.13005/ojc

    23. [23]

      Juskowiak, M.; Krzyżanowski, P. J. Prakt. Chem. 1989, 331, 870.  doi: 10.1002/(ISSN)1521-3897

    24. [24]

      Shimaoka, H.; Kuramoto, H.; Furukawa, J. I.; Miura, Y.; Kurogochi, M.; Kita, Y.; Hinou, H.; Shinohara, Y.; Nishimura, S. I. Chem.-Eur. J. 2007, 13, 1664.  doi: 10.1002/(ISSN)1521-3765

    25. [25]

      Sridhar, M.; Narsaiah, C.; Raveendra, J.; Reddy, G. K.; Reddy, M. K. K.; Ramanaiah, B. C. Tetrahedron Lett. 2011, 52, 4701.  doi: 10.1016/j.tetlet.2011.07.015

    26. [26]

      Hyodo, K.; Togashi, K.; Oishi, N.; Hasegawa, G.; Uchida, K. Green Chem. 2016, 18, 5788.  doi: 10.1039/C6GC02156E

    27. [27]

      Pienkoß, F.; Ochoa-Hernández, C.; Theyssen, N.; Leitner, W. ACS Sustainable Chem. Eng. 2018, 6, 8782.  doi: 10.1021/acssuschemeng.8b01151

    28. [28]

      Aras, A.; Albayrak, M.; Arikan, M.; Sobolev, K. Clay Miner. 2007, 42, 233.  doi: 10.1180/claymin.2007.042.2.08

    29. [29]

      Zheng, Y. F.; Li, D.; Chen, S. K.; Sun, S. H.; Liu, C. H.; Gao, X. H. Ind. Catal. 2012, 20, 1 (in Chinese).

    30. [30]

      Shen, J. X.; Ma, H. W. Bull. Chin. Ceram. Soc. 2016, 35, 1150 (in Chinese).

    31. [31]

      Yan, H. Q.; Chen, X. Q.; Wu, T. T.; Feng, Y. H.; Wang, C. X.; Li, J. C.; Lin, Q. Polym. Bull. 2014, 71, 2923.  doi: 10.1007/s00289-014-1231-1

    32. [32]

      Ignatova, T.; Mincheva, K.; Ignatov, S.; Dzhelyaydinova, A.; Petkov, T.; Kyazimov, A. J. Chem. Technol. Metall. 2013, 48, 186.

    33. [33]

      Liu, H. J.; Ao, L. Inner Mongolia Pet. Ind. 1998, 24, 112 (in Chinese).

    34. [34]

      Chermahini, A. N.; Teimouri, A.; Momenbeik, F.; Zarei, A.; Dalirnasab, Z.; Ghaedi, A.; Roosta, M. J. Heterocycl. Chem. 2010, 47, 913.  doi: 10.1002/jhet.382

    35. [35]

      Maheen, G.; Tian, G.; Song, Z.; He, C.; Shi, Z.; Liu, Z.; Yuan, H.; Feng, S. J. Heterocycl. Chem. 2010, 47, 483.

    36. [36]

      Hirano, M.; Monobe, H.; Yakabe, S.; Morimoto T. J. Chem. Res., Synop. 1998, 0, 662.

    37. [37]

      Matsuzaki, T.; Ohsuga, K.; Sugi, Y.; Takami, Y.; Imamura, J. J. Chem. Soc. Jpn., Chem. Ind. Chem. 1985, 12, 2331.

    38. [38]

      Roudier, J. F.; Foucaud, A. Tetrahedron Lett. 1984, 25, 4375.  doi: 10.1016/S0040-4039(01)81442-8

    39. [39]

      Kappe, C. O.; Pieber, B.; Dallinger, D. Angew. Chem., Int. Ed. 2013, 52, 1088.  doi: 10.1002/anie.201204103

    40. [40]

      Nuechter, M.; Ondruschka, B.; Bonrath, W.; Gum, A. Green Chem. 2004, 6, 128.  doi: 10.1039/B310502D

    41. [41]

      Alam, M.; Lee, D. U. Korean J. Chem. Eng. 2015, 32, 1142.  doi: 10.1007/s11814-014-0314-x

    42. [42]

      Erdogan, T.; Erdogan, F. O. Lett. Org. Chem. 2018, 15, 99.

    43. [43]

      Khan, A. U.; Avecillia, F.; Malik, N.; Khan, M. S.; Khan, M. S.; Mushtaque, M. J. Mol. Struct. 2016, 1122, 100.  doi: 10.1016/j.molstruc.2016.05.085

    44. [44]

      Gedye, R. N.; Smith, F. E.; Westaway, K. C. Can. J. Chem., 1988, 66, 17.  doi: 10.1139/v88-003

    45. [45]

      Lu, C. B. China Pulp Pap. Ind. 2017, 38, 11 (in Chinese).

    46. [46]

      Lapides, I.; Yariv, S.; Lahav, N. Clay Miner. 1995, 30, 287.  doi: 10.1180/claymin.1995.030.4.02

    47. [47]

      Gu, T.; Zou, Z. G. B. Bull. Chin. Ceram. Soc. 2005, 4, 70 (in Chinese).

    48. [48]

      Tian, J. Crystal Chemistry of Silicate, Wuhan University Press, Wuhan, 2010, pp. 194~196 (in Chinese).

    49. [49]

      Xiong, W.; Liu, J.; Huang, N.; Zhang, H. P. J. Shaoyang Univ. (Nat. Sci. Ed.) 2012, 9, 75 (in Chinese).  doi: 10.3969/j.issn.1672-7010.2012.03.017

    50. [50]

      Lieberman, S. V. J. Am. Chem. Soc. 1955, 77, 1114.  doi: 10.1021/ja01610a010

    51. [51]

      Zhukovskaya, N. A.; Dikusar, E. A. Russ. J. Org. Chem. 2010, 46, 180.  doi: 10.1134/S1070428010020065

    52. [52]

      Ngwerume, S.; Camp, J. E. J. Org. Chem. 2010, 75, 6271.  doi: 10.1021/jo1011448

    53. [53]

      Fazaeli, R.; Tangestaninejad, S.; Aliyan H. Catal. Commun. 2007, 8, 205.  doi: 10.1016/j.catcom.2006.05.055

    54. [54]

      Chen, J. B.; Liu, E. M.; Chern, T. R.; Yang, C. W.; Lin, C. I.; Huang, N. K.; Lin, Y. L.; Chern, Y.; Lin, J. H.; Fang, J. M. ChemMedChem 2011, 6, 1390.  doi: 10.1002/cmdc.v6.8

    55. [55]

      Wiley, R. H.; Wakefield, B. J. J. Org. Chem. 1960, 25, 546.  doi: 10.1021/jo01074a014

    56. [56]

      Mokhtari, J.; Naimi-Jamal, M. R.; Hamzeali, H.; Dekamin, M. G.; Kaupp, G. ChemSusChem 2009, 2, 248.  doi: 10.1002/cssc.v2:3

    57. [57]

      Corma, A.; Garcia, H.; Leyva, A. J. Mol. Catal. A-Chem. 2005, 230, 97.  doi: 10.1016/j.molcata.2004.11.030

    58. [58]

      Wang, H. Y.; Mueller, D. S.; Sachwani, R. M.; Londino, H. N.; Anderson, L. L. Org. Lett. 2010, 12, 2290.  doi: 10.1021/ol100659q

    59. [59]

      Balogh, A.; Kovendi, A.; Rotaru, D.; Craciunescu, E. US 3117995, 1964[Chem Abstr. 1964, 60, 52549].

    60. [60]

      Prateeptongkum, S.; Jovel, I.; Jackstell, R.; Vogl, N.; Weckbecker, C.; Beller, M. Chem. Commun. 2009, 1990.

    61. [61]

      Talapatra, S. K.; Chaudhuri, P.; Talapatra, B. Heterocycles 1980, 14, 1279.  doi: 10.3987/R-1980-09-1279

    62. [62]

      Domnin, N. A.; Yakimovich, S. I. Zh. Neorg. Khim. 1965, 1, 1024.

    63. [63]

      Jain, N.; Kumar, A.; Chauhan, S. M. S. Tetrahedron Lett. 2005, 46, 2599.  doi: 10.1016/j.tetlet.2005.02.088

    64. [64]

      Gunatilaka, A. A. L.; Ramachandran, S. Indian J. Chem. 1978, 16B, 432.

    65. [65]

      Bruton, E. A.; Brammer, L.; Pigge, F. C.; Aakeroey, C. B.; Leinen, D. S. New J. Chem. 2003, 27, 1084.  doi: 10.1039/B301045G

    66. [66]

      Bodor, N.; Fey, L.; Kovendi, A. Rev. Roum. Chim. 1966, 11, 405.

    67. [67]

      Dubost, E.; Fossey, C.; Cailly, T. Rault, S.; Fabis, F. J. Org. Chem. 2011, 76, 6414.  doi: 10.1021/jo200853j

  • 加载中
    1. [1]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    2. [2]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    3. [3]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    4. [4]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    5. [5]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    6. [6]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    7. [7]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    8. [8]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    9. [9]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    10. [10]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    11. [11]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    12. [12]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    13. [13]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    14. [14]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    15. [15]

      Ying Xiong Guangao Yu Lin Wu Qingwen Liu Houjin Li Shuanglian Cai Zhanxiang Liu Xingwen Sun Yuan Zheng Jie Han Xin Du Chengshan Yuan Qihan Zhang Jianrong Zhang Shuyong Zhang . Basic Operations and Specification Suggestions for Determination of Physical Constants of Organic Compounds. University Chemistry, 2025, 40(5): 106-121. doi: 10.12461/PKU.DXHX202503079

    16. [16]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    17. [17]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    18. [18]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    19. [19]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    20. [20]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

Metrics
  • PDF Downloads(7)
  • Abstract views(816)
  • HTML views(76)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return