Citation: Huang Hui, Li Juanhua, Liu Kunming, Liu Jinbiao. Recent Progress in Transition Metal-Catalyzed Coupling Reactions of Organotitanium Reagents[J]. Chinese Journal of Organic Chemistry, ;2019, 39(5): 1293-1303. doi: 10.6023/cjoc201810036 shu

Recent Progress in Transition Metal-Catalyzed Coupling Reactions of Organotitanium Reagents

  • Corresponding author: Liu Kunming, liukunminglkm@sina.com Liu Jinbiao, liujbgood@hotmail.com
  • Received Date: 29 October 2018
    Revised Date: 19 December 2018
    Available Online: 9 May 2019

    Fund Project: the National Natural Science Foundation of China 21762018Project supported by the National Natural Science Foundation of China (Nos. 21762018, 21772067), the Science and Technology Project Founded by the Education Department of Jiangxi Province (No. GJJ160668), the Program of Qingjiang Excellent Young Talents, Jiangxi University of Science and Technology, the Innovation and Entrepreneurship Training Program (No. XZG-16-08-12) and the Doctoral Scientific Research Foundation of Jiangxi University of Science and Technologythe Science and Technology Project Founded by the Education Department of Jiangxi Province GJJ160668the Innovation and Entrepreneurship Training Program XZG-16-08-12the National Natural Science Foundation of China 21772067

Figures(15)

  • Organotitanium proves to be one of ideal organometallic candidates because of its low price, non-toxicity, diversified types, excellent chemo-, regio- and stereo-selectivities. The reactivity of organotitanium reagent could be easily controlled by ligands of central titanium atom. Recently, the coupling reactions of organotitanium reagent have attracted extensive attention. This review summerized recent progress in transiton metal-catalyzed coupling reactons of organotitanium reagents concerning their types.
  • 加载中
    1. [1]

      For Grignard reagent: (a) Tamao, K. J. Organomet. Chem. 2002, 653, 23.
      (b) Knochel, P.; Dohle, W.; Gommermann, N.; Kneisel, F. F.; Kopp, F.; Korn, T.; Sapountzis, I.; Vu, V. A. Angew. Chem., Int. Ed. 2003, 42, 4302.
      (c) Ha, H.; Baron, O.; Wanger, A. J.; Knochel, P. Chem. Lett. 2006, 35, 2.

    2. [2]

      For Lithium reagent: (a) Barluenga, J.; Feunandez, A.; Alvarez- Rodrigo, L.; Rodriguez, F.; Fananas, F. J. Synlett 2005, 2513.
      (b) Son, E. C.; Tsuji, H.; Saeki, T.; Tamao, K. Bull. Chem. Soc. Jpn. 2006, 79, 492.
      (c) He, P.; Dong, C. G.; Hu, Q. S. Tetrahedron Lett. 2008, 49, 1906.

    3. [3]

      Knochel, P.; Singer, R. D. Chem. Rev. 1993. 93, 2117.  doi: 10.1021/cr00022a008

    4. [4]

      Lipshutz, B. H. Acc. Chem. Res. 1997, 30, 277.  doi: 10.1021/ar960297z

    5. [5]

      (a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
      (b) Suzuki, A. Pure Appl. Chem. 1994, 66, 213.

    6. [6]

      Espinet, P.; Echavarren, A. M. Angew. Chem., Int. Ed. 2004, 43, 4704.
       

    7. [7]

      Weidmann, B.; Seebach, D. Angew. Chem., Int. Ed. Engl. 1983, 12, 31.
       

    8. [8]

      (a) Reetz, M. T.; Steinbach, R.; Westermann, J.; Peter, R. Angew. Chem., Int. Ed. 1980, 92, 1044.
      (b) Olivero, A. G.; Weidmann, B.; Seebach, D. Helv. Chim. Acta 1981, 64, 2485.
      (c) Widler, L.; Seebach, D. Helv. Chim. Acta 1982, 65, 1085.
      (d) Widler, L.; Seebach, D. Helv. Chim. Acta 1982, 65, 1972.

    9. [9]

      (a) Wu, S. Z.; Zhou, Y. K. Chin. J. Org. Chem. 1983, 3, 9(in Chinese).
      (吴绍祖, 周耀坤, 有机化学, 1983, 3, 9.)
      (b) Chen, M. W. Chem. Reag. 1992, 14, 297(in Chinese).
      (陈美文, 化学试剂, 1992, 14, 297.)
      (c) Hughes, D. L. Top. Organomet. Chem. 2004, 6, 37.
      (d) Kulinkovich, O. G.; Meijere, A. D. Chem. Rev. 2000, 100, 2789;
      (e) Hayashi, T. Bull. Chem. Soc. Jpn. 2004, 77, 13.
      (f) Yang, Z. S.; Li, Y. Chin. J. Org. Chem. 2005, 25, 1342(in Chinese).
      (杨忠顺, 李英, 有机化学, 2005, 25, 1342.)
      (g) Kulinkovich, O. Comprehensive Organic Synthesis Ⅱ, 2nd ed., Elsevier Ltd., Netherlands, 2014, 124.

    10. [10]

      Weidmann, B.; Seebach, D. Helv. Chim. Acta 1980, 63, 2451.  doi: 10.1002/(ISSN)1522-2675

    11. [11]

      Herman, D. F.; Nelson, W. K. J. Am. Chem. Soc. 1952, 74, 2693.
       

    12. [12]

      Tolstikov, G. A.; Kasatkin, A. N. Izv. Akad. Nauk SSSR, Ser. Khim. 1984, 2835

    13. [13]

      Kasatkin, A. N.; Tolstikov, G. A.; Kulak, A. N. Izv. Akad. Nauk SSSR, Ser. Khim. 1986, 11, 2527.

    14. [14]

      (a) Kasatkin, A. N.; Tolstikov, G. A.; Kulak, A. N. Izv. Akad. Nauk SSSR, Ser. Khim. 1987, 2, 391.
      (b) Kasatkin, A. N.; Tolstikov, G. A.; Kulak, A. N. Izv. Akad. Nauk SSSR, Ser. Khim. 1988, 9, 2159.

    15. [15]

      (a) Weber, B.; Seebach, D. Tetrahedron 1994, 50, 7473.
      (b) Kim, Y. H.; Byun, I. S.; Choi, J. Y. Tetrahedron: Asymmetry 1995, 6, 1025.
      (c) Zhou, S.; Chen, C.-R.; Gau, H.-M. Org. Lett. 2009, 12, 48.
      (d) Wu, K.-H.; Zhou, S.; Chen, C.-A.; Yang, M.-C.; Chiang, R.-T.; Chen, C.-R.; Gau, H.-M. Chem. Comm. 2011, 4, 11668.

    16. [16]

      Han, J. W.; Tokunaga, N.; Hayashi, T. Synlett 2002, 871.

    17. [17]

      Manolikakes, G.; Dastbaravardeh, N.; Knochel, P. Synlett 2007, 2077.

    18. [18]

      Lee, H. W.; Lam, F. L.; So, C. M.; Lau, C. P.; Chan, A. S. C.; Kwong, F. Y. Angew. Chem., Int. Ed. 2009, 48, 7436.  doi: 10.1002/anie.v48:40

    19. [19]

      (a) Yang, H.-T.; Zhou, S.; Chang, F.-S.; Chen, C.-R.; Gau, H.-M. Organometallics 2009, 28, 5715.
      (b) Chen, C.-R.; Zhou, S.; Biradar, D. B.; Gau, H.-M. Adv. Synth. Catal. 2010, 352, 1718.

    20. [20]

      Chang, S.-T.; Li, Q.-H.; Chiang, R.-T.; Gau, H.-M. Tetrahedron 2012, 68, 3956.  doi: 10.1016/j.tet.2012.03.072

    21. [21]

      Li, Q.-H.; Liao, J.-W.; Huang, Y.-L.; Chiang, R.-T.; Gau, H.-M. Org. Biomol. Chem. 2014, 12, 7634.  doi: 10.1039/C4OB00677A

    22. [22]

      Sato, F.; Urabe, H.; Okamoto, S. Chem. Rev., 2000, 100, 2835.  doi: 10.1021/cr990277l

    23. [23]

      Harada, K.; Urabe, H.; Sato, F. Tetrahedron Lett. 1995, 36, 3203.  doi: 10.1016/0040-4039(95)00513-C

    24. [24]

      Obora, Y.; Moriya, H.; Tokunaga, M.; Tsuji, Y. Chem. Commun. 2003, 2820.
       

    25. [25]

      You, X.; Xie, X.; Sun, R. H.; Chen, H. Y.; Li, S; Liu, Y. H. Org. Chem. Front. 2014, 1, 940.  doi: 10.1039/C4QO00159A

    26. [26]

      Rassadin, V. A.; Nicolasb, E.; Six, Y. Chem. Commun. 2014, 50, 7666.  doi: 10.1039/c4cc02698e

    27. [27]

      Wittig, G. Angew. Chem. 1958, 70, 65.  doi: 10.1002/(ISSN)1521-3757

    28. [28]

      Jana, R.; Pathak, T. P.; Sigman, M. S. Chem. Rev. 2012, 111, 1417.
       

    29. [29]

      (a) Hatakeyama, T.; Hashimoto, T.; Kondo, Y.; Fujiwara, Y.; Seike, H.; Takaya, H.; Tamada, Y.; Ono, T.; Nakamura, M. J. Am. Chem. Soc. 2010, 132, 10674.
      (b) Hashimoto, T.; Hatakeyama, T.; Nakamura, M. J. Org. Chem. 2012, 77, 1168.
      (c) Hatakeyama, T.; Hashimoto, T.; Kathriarachchi, K. K. A. D. S.; Zenmyo, T.; Seike, H.; Nakamura, M. Angew. Chem., Int. Ed. 2012, 124, 1.
      (d) Nakagawa, N.; Hatakeyama, T.; Nakamura, M. Chem. Lett. 2015, 44, 486.

    30. [30]

      (a) Muramatsu, Y.; Harada, T. Angew. Chem., Int. Ed. 2008, 47, 1088.
      (b) Muramatsu, Y.; Harada, T. Chem.-Eur. J. 2008, 14, 10560.
      (c) Nakagawa, Y.; Muramatsu, Y.; Harada, T. Eur. J. Org. Chem. 2010, 34, 6535.
      (d) Itakura, D.; Harada, T. Synlett 2011, 2875.

    31. [31]

      Mikami, K.; Murase, T.; Itoh, Y. J. Am. Chem. Soc. 2007, 129, 11686.  doi: 10.1021/ja074642z

    32. [32]

      Arai, M.; Nakamura, E. J. Org. Chem. 1991, 56, 5489.  doi: 10.1021/jo00019a001

    33. [33]

      (a) Li, Y.-X.; Xuan, Q.-Q.; Liu, L.; Wang, D.; Chen, Y.-J.; Li, C.-J. J. Am. Chem. Soc. 2013, 135, 12536.
      (b) Semba, K.; Nakao, Y. J. Am. Chem. Soc. 2014, 136, 7567.
      (c) Labre, F.; Gimbert, Y.; Bannwarth, P.; Olivero, S.; Duñach, E.; Chavant, P. Y. Org. Lett. 2014, 16, 2366.
      (d) Seth, K.; Purohit, P.; Chakraborti, A. K. Org. Lett. 2014, 2334.

    34. [34]

      (a) Mulvey, R. E. Organometallics 2006, 25, 1060.
      (b) Mulvey, R. E.; Mongin, F.; Uchiyama, M.; Kondo, Y. Angew. Chem., Int. Ed. 2007, 46, 3802.

    35. [35]

      Zeng, J.; Liu, K.-M.; Duan, X.-F. Org. Lett. 2013, 15, 5342.  doi: 10.1021/ol402599f

    36. [36]

      Wei, J.; Liu, K.-M.; Duan, X.-F. J. Org. Chem. 2017, 82, 1291.  doi: 10.1021/acs.joc.6b02354

    37. [37]

      (a) Bedford, R. B.; Hall, M. A.; Hodges, G. R.; Huwe, M.; Wilkinson, M. C. Chem. Commun. 2009, 42, 6430.
      (b) O'Brien, H. M.; Manzotti, M.; Abrams, R. D.; Elorriaga, D.; Sparkes, H. A.; Davis, S. A.; Bedford, R. B. Nat. Catal. 2018, 1, 429.

    38. [38]

      Zhang, R.; Zhao, Y.; Liu, K.-M.; Duan, X.-F. Org. Lett. 2018, 7942.

    39. [39]

      Liu, K.-M.; Liao, L.-Y.; Duan, X.-F. Chem. Commun. 2015, 51, 1124.  doi: 10.1039/C4CC08494B

    40. [40]

      Liu, K.-M.; Wei, J.; Duan, X.-F. Chem. Commun. 2015, 51, 4655.  doi: 10.1039/C5CC00514K

    41. [41]

      Liao, L.-Y.; Liu, K.-M.; Duan, X.-F. J. Org. Chem. 2015, 80, 9856.  doi: 10.1021/acs.joc.5b01787

    42. [42]

      (a) Goossen, L. J.; Paetzold, J.; Winkel, L. Synlett 2002, 1721.
      (b) Goossen, L. J.; Deng, G.; Levy, L. M. Science 2006, 313, 662.
      (c) Goossen, L. J.; Rodriguez, N.; Melzer, B. J. Am. Chem. Soc. 2007, 129, 4824.
      (d) Zhou, J.; Peng, H.; Zhang, M.; Huang, S. J.; Wang, M.; Su, W.-P. Chem.-Eur. J. 2010, 16, 5876.

    43. [43]

      Liu, K.-M.; Zhang, R.; Duan, X.-F. Org. Biomol. Chem. 2016, 14, 1593.  doi: 10.1039/C5OB02496J

    44. [44]

      (a) Lumbroso, A.; Abermil, N.; Breit, B. Chem. Sci. 2012, 3, 789.
      (b) Iitsuka, T.; Schaal, P.; Hirano, K.; Satoh, T.; Bolm, C.; Miura, M. J. Org. Chem. 2013, 78, 7216.
      (c) Zhang, M. L.; Zhang, H.-J.; Han, T. T.; Ruan, W. Q.; Wen, T.-B. J. Org. Chem. 2015, 80, 620.

    45. [45]

      (a) Vilardo, J. S.; Thorn, M. G.; Fanwick, P. E.; Rothwell, I. P. Chem. Commun. 1998, 22, 2425.
      (b) Turner, L. E.; Thorn, M. G.; Swartz Ⅱ, R. D.; Chesnut, R. W.; Fanwick, P. E.; Rothwell, I. P. Dalton Trans. 2003, 24, 4580.

    46. [46]

      (a) Boyle, T. J.; Ottley, L. A. M.; Rodriguez, M. A.; Sewell, R. M.; Alam, T. M.; McIntyre, S. K. Inorg. Chem. 2008, 47, 10708.
      (b) Muna, S.-D.; Kim, S.-H.; Lee, J.; Kim, H.-J.; Do, Y.-K.; Kim, Y.-J. Polyhedron 2010, 29, 379.
      (c) Deivasagayam, D.; Peruch, F. Polymer 2011, 52, 4686.

  • 加载中
    1. [1]

      Yan Qi Yueqin Yu Weisi Guo Yongjun Liu . 过渡金属参与的有机反应案例教学与实践探索. University Chemistry, 2025, 40(6): 111-117. doi: 10.12461/PKU.DXHX202411021

    2. [2]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    3. [3]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    4. [4]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    5. [5]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    6. [6]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    7. [7]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    8. [8]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    9. [9]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    10. [10]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    11. [11]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    12. [12]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    13. [13]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    14. [14]

      Lewang Yuan Yaoyao Peng Zong-Jie Guan Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086

    15. [15]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    16. [16]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    17. [17]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    18. [18]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    19. [19]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    20. [20]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

Metrics
  • PDF Downloads(18)
  • Abstract views(1060)
  • HTML views(173)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return