Theoretical Advances on the Mechanism of Transition Metal-Catalyzed C—F Functionalization
- Corresponding author: Lan Yu, lanyu@cqu.edu.cn
	            Citation:
	            
		            Li Yuanyuan, Wang Yuanjian, Zhu Lei, Qu Lingbo, Lan Yu. Theoretical Advances on the Mechanism of Transition Metal-Catalyzed C—F Functionalization[J]. Chinese Journal of Organic Chemistry,
							;2019, 39(1): 38-46.
						
							doi:
								10.6023/cjoc201810020
						
					
				
					 
				
	        
 
	                
				Brown, J. M.; Gouverneur, V. Angew. Chem., Int. Ed. 2009, 48, 8610.
												 doi: 10.1002/anie.v48:46
											
										
				Furuya, T.; Klein, J. E. M. N.; Ritter, T. Synthesis 2010, 1804.
										
				Furuya, T.; Kamlet, A. S.; Ritter, T. Nature 2011, 473, 470.
												 doi: 10.1038/nature10108
											
										
				Liang, T.; Neumann, C. N.; Ritter, T. Angew. Chem., Int. Ed. 2013, 52, 8214.
												 doi: 10.1002/anie.v52.32
											
										
Clark, J. H.; Wails, D.; Bastock, T. W. Aromatic Fluorination, CRC Press, Boca Raton, FL, 1996.
Kirsch, P. Modern Fluoroorganic Chemistry:Synthesis, Reactivity, Applications, Wiley, Weinheim, Germany, 2004.
				Zeng, Z.; Zhang, T.; Yue, X. Y.; Zhang, H.; Bai, R. P.; Lan, Y. Sci. Sin. Chim. 2018, 48, 736(in Chinese).
										
				Doherty, N. M.; Hoffmann, N. W. Chem. Rev. 1991, 91, 553.
												 doi: 10.1021/cr00004a005
											
										
				Torrens, H. Coord. Chem. Rev. 2005, 249, 1957.
												 doi: 10.1016/j.ccr.2005.01.025
											
										
				Kiplinger, J. L.; Richmond, T. G.; Osterberg, C. E. Chem. Rev. 1994, 94, 373.
												 doi: 10.1021/cr00026a005
											
										
				Möller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.
												 doi: 10.1126/science.1131943
											
										
				Wang, J.; Roselló, M. S.; Ace a, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432.
												 doi: 10.1021/cr4002879
											
										
				O'Hagan, D. Chem. Soc. Rev. 2008, 37, 308.
												 doi: 10.1039/B711844A
											
										
Wang, L. Ph.D. Dissertation, Shandong University, Ji'nan 2016 (in Chinese).
				McGrady, J. E.; Perutz, R. N.; Reinhold, M. J. Am. Chem. Soc. 2004, 126, 5268.
												 doi: 10.1021/ja0396908
											
										
				Bosque, R.; Clot, E.; Fantacci, S.; Maseras, F.; Eisenstein, O.; Perutz, R. N.; Renkema, K. B.; Caulton, K. G. J. Am. Chem. Soc. 1998, 120, 12634.
												 doi: 10.1021/ja9824573
											
										
				Jasim, N. A.; Perutz, R. N.; Whitwood, A. C.; Braun, T.; Izundu, J.; Neumann, B.; Rothfeld, S.; Stammler, H. G. Organometallics 2004, 23, 6140.
												 doi: 10.1021/om049448p
											
										
				Cronin, L.; Higgitt, C. L.; Karch, R.; Perutz, R. N. Organometallics 1997, 16, 4920.
												 doi: 10.1021/om9705160
											
										
				Vela, J.; Smith, J. M.; Yu, Y.; Ketterer, N. A.; Flaschenriem, C. J.; Lachicotte, R. J.; Holland, P. L. J. Am. Chem. Soc. 2005, 127, 7857
												 doi: 10.1021/ja042672l
											
										
				Lindup, R. J.; Marder, T. B.; Perutz, R. N.; Whitwood, A. C. Chem. Commun. 2007, 3664.
										
				Lin, Y.; Zhu, L.; Lan, Y.; Rao, Y. Chem.-Eur. J. 2015, 21, 14937.
												 doi: 10.1002/chem.201502140
											
										
				Shan, C. H.; Luo, X. L.; Qi, X. T.; Liu, S.; Li, Y. Z.; Lan, Y. Organometallics 2016, 35, 1440.
												 doi: 10.1021/acs.organomet.6b00064
											
										
				Liu, R. R.; Zhu, L.; Hu, J. P.; Lu, C. J.; Gao, J. R.; Lan, Y.; Jia, Y. X. Chem. Commun. 2017, 53, 5890.
												 doi: 10.1039/C7CC01015J
											
										
				Ye, J. H.; Zhu, L.; Yan, S. S.; Miao, M.; Zhang, X. C.; Zhou, W. J.; Li, J.; Lan, Y.; Yu, D. G. ACS Catal. 2017, 7, 8324.
												 doi: 10.1021/acscatal.7b02533
											
										
				Kang, K.; Liu, S. S.; Xu, T.; Wang, D. C.; Leng, X. B.; Bai, R. P.; Lan, Y.; Shen, Q. L. Organometallics 2017, 36, 4727.
												 doi: 10.1021/acs.organomet.7b00588
											
										
				Li, Y. Z.; Zou, L. F.; Bai, R. P.; Lan, Y. Org. Chem. Front. 2018, 5, 615.
												 doi: 10.1039/C7QO00850C
											
										
				Zhu, L.; Ye, J. H.; Duan, M.; Qi, X. T.; Yu, D. G.; Bai, R. P.; Lan, Y. Org. Chem. Front. 2018, 5, 633.
												 doi: 10.1039/C7QO00838D
											
										
				Yuan, C. C.; Zhu, L.; Zeng, R. S.; Lan, Y.; Zhao, Y. S. Angew. Chem., Int. Ed. 2018, 57, 1277.
												 doi: 10.1002/anie.201711221
											
										
				Braun, T.; Cronin, L.; Higgitt, C. L.; McGrady, J. E.; Perutz, R. N.; Reinhold, M. New J. Chem. 2001, 25, 19.
												 doi: 10.1039/b006368l
											
										
				Braun, T.; Perutz, R. N. Chem. Commun. 2002, 2749.
										
				Wang, T. L.; Yu, Z. Y.; Hoon, D. L.; Huang, K. W.; Lan, Y.; Lu, Y. X. Chem. Sci. 2015, 6, 4912.
												 doi: 10.1039/C5SC01614B
											
										
				Duan, M.; Zhu, L.; Qi, X. T.; Yu, Z. Y.; Li, Y. Z.; Bai, R. P.; Lan, Y. Sci. Rep. 2017, 7, 7619.
												 doi: 10.1038/s41598-017-07863-9
											
										
				Braun, T.; Perutz, R. N.; Sladek, M. I. Chem. Commun. 2001, 2254.
										
				Burdeniuc, J.; Jedlicka, B.; Crabtree, R. H. Chem. Ber. 1997, 130, 145.
												 doi: 10.1002/(ISSN)1099-0682
											
										
				Wilhelm, R.; Widdowson, D. A. J. Chem. Soc., Perkin Trans. 1 2000, 3808.
										
				Braun, T.; Noveski, D.; Ahijado, M.; Wehmeier, F. Dalton Trans. 2007, 3820.
										
				Kiso, Y.; Tamao, K.; Kumada, M. J. Organomet. Chem. 1973, 50, 12.
												 doi: 10.1016/S0022-328X(00)95063-0
											
										
				Tamao, K.; Sumitani, K.; Kiso, Y.; Zembayashi, M.; Fujioka, A.; Kodama, S.; Nakajima, I.; Minato, A.; Kumada, M. Bull. Chem. Soc. Jpn. 1976, 49, 1958.
												 doi: 10.1246/bcsj.49.1958
											
										
				Nishimine, T.; Taira, H.; Tokunaga, E.; Shiro, M.; Shibata, N. Angew. Chem., Int. Ed. 2016, 55, 359.
												 doi: 10.1002/anie.201508574
											
										
				Okusu, S.; Okazaki, H.; Tokunaga, E.; Soloshonok, V. A.; Shibata, N. Angew. Chem., Int. Ed. 2016, 55, 6744.
												 doi: 10.1002/anie.201601928
											
										
				Zhang, X.; Liu, Y.; Chen, G.; Pei, G.; Bi, S. Organometallics 2017, 36, 3739.
												 doi: 10.1021/acs.organomet.7b00514
											
										
				Doi, R.; Kikushima, K.; Ohashi, M.; Ogoshi, S.; J. Am. Chem. Soc. 2015, 137, 3276.
												 doi: 10.1021/ja511730k
											
										
				Ohashi, M.; Shibata, M.; Ogoshi, S. Angew. Chem. 2014, 126, 13796.
												 doi: 10.1002/ange.201408467
											
										
				Ohashi, M.; Kambara, T.; Hatanaka, T.; Saijo, H.; Doi, R.; Ogoshi, S. J. Am. Chem. Soc. 2011, 133, 3256.
												 doi: 10.1021/ja109911p
											
										
				Qi, X. T.; Li, Y. Z.; Bai R.P.; Lan, Y. Acc. Chem. Res. 2017, 50, 2799.
												 doi: 10.1021/acs.accounts.7b00400
											
										
				Liu, S.; Qi, X. T.; Qu, L. B.; Bai, R. P.; Lan, Y. Catal. Sci. Technol. 2018, 8, 1645.
												 doi: 10.1039/C7CY02367G
											
										
				Li, Y. Y.; Chen, Y. H.; Shan, C. H.; Zhang, J.; Xu, D. D.; Bai, R. P.; Qu, L. B.; Lan, Y. Chin. J. Org. Chem. 2018, 38, 1885(in Chinese).
										 
				Li, Y. Z.; Liu, S.; Qi, Z. S.; Qi, X. T.; Li, X. W.; Lan, Y. Chem.-Eur. J. 2015, 21, 10131.
												 doi: 10.1002/chem.201500290
											
										
				Luo, Y. X.; Liu, S.; Xu, D.; Qu, L. B.; Luo, X. L.; Bai, R. P.; Lan, Y. J. Organomet. Chem. 2018, 864, 148.
												 doi: 10.1016/j.jorganchem.2018.03.016
											
										
				Hofmann, P.; Unfried, G. Chem. Ber. 1992, 125, 659.
												 doi: 10.1002/(ISSN)1099-0682
											
										
				Belt, S. T.; Helliwell, M.; Jones, W. D.; Partridge, M. G.; Perutz, R. N. J. Am. Chem. Soc. 1993, 115, 1429.
												 doi: 10.1021/ja00057a028
											
										
				Schaub, T.; Radius, U. Chem.-Eur. J. 2005, 11, 5024.
												 doi: 10.1002/(ISSN)1521-3765
											
										
				Belt, S. T.; Duckett, S. B.; Helliwell, M.; Perutz, R. N. J. Chem. Soc., Chem. Commun. 1989, 928.
										
				Jasim, N. A.; Perutz, R. N. J. Am. Chem. Soc. 2000, 122, 8685.
												 doi: 10.1021/ja0010913
											
										
				Braun, T.; Cronin, L.; Higgitt, C. L.; McGrady, J. E.; Perutz, R. N.; Reinhold, M. New J. Chem. 2001, 25, 19.
												 doi: 10.1039/b006368l
											
										
				Amii, H.; Uneyama, K. Chem. Rev. 2009, 109, 2119.
												 doi: 10.1021/cr800388c
											
										
				Fuchibe, K.; Ohshima, Y.; Mitomi, K.; Akiyama, T. J. Fluorine Chem. 2007, 128, 1158.
												 doi: 10.1016/j.jfluchem.2007.06.003
											
										
				Braun, T.; Noveski, D.; Ahijado, M. Wehmeier, F. Dalton Trans. 2007, 3820.
										
				Meier, G.; Braun, T. Angew. Chem., Int. Ed. 2009, 48, 1546.
												 doi: 10.1002/anie.200805237
											
										
				Braun, T.; Perutz, R. N. Chem. Commun. 2002, 2749.
										
				Shan, C. H.; Zhu, L.; Qu, L. B.; Bai, R. P.; Lan, Y. Chem. Soc. Rev. 2018, 47, 7552.
												 doi: 10.1039/C8CS00036K
											
										
				Shan, C. H.; Zhong, K. B.; Qi, X. T.; Xu. D. D.; Qu, L. B.; Bai, R. P.; Lan, Y. Org. Chem. Front. 2018, 5, 3178.
												 doi: 10.1039/C8QO00699G
											
										
				Chen, C. H.; Luo, Y. X.; Fu, L.; Chen, P. H.; Lan, Y.; Liu, G. S. J. Am. Chem. Soc. 2018, 140, 1207.
												 doi: 10.1021/jacs.7b11470
											
										
				Zhang, H.; Wang, H. Y.; Luo, Y. X.; Chen, C. H.; Gao, Y. M.; Chen, P. H.; Guo, Y. L.; Lan, Y.; Liu, G. S. ACS Catal. 2018, 8, 2173.
												 doi: 10.1021/acscatal.7b03220
											
										
				Yin, Y. Z.; Yue, X. Y.; Zhong, Q.; Jiang, H. M.; Bai, R. P.; Lan, Y.; Zhang, H. Adv. Synth. Catal. 2018, 360, 1639.
												 doi: 10.1002/adsc.v360.8
											
										
				Yuan, C. C.; Zhu, L.; Chen, C. P.; Chen, X. L.; Yang, Y.; Lan, Y.; Zhao, Y. S. Nat. Commun. 2018, 9, 1189.
												 doi: 10.1038/s41467-018-03341-6
											
										
				Yao, W. J.; Yu, Z. Y.; Wen, S.; Ni, H. Z.; Ullah, N.; Lan, Y.; Lu, Y. X. Chem. Sci. 2017, 8, 5196.
												 doi: 10.1039/C7SC00952F
											
										
				Yu, Z. Y.; Lan, Y. J. Org. Chem. 2013, 78, 11501.
												 doi: 10.1021/jo402070f
											
										
				Yue, X. Y.; Shan, C. H.; Qi, X. T.; Luo, X. L.; Zhu, L.; Zhang, T.; Li, Y. Y.; Li, Y. Z.; Bai, R. P.; Lan, Y. Dalton Trans. 2018, 47, 1819.
												 doi: 10.1039/C7DT04084A
											
										
				Li, J. J.; Zhang, D. J.; Sun, H. J.; Li, X. Y. Org. Biomol. Chem. 2014, 12, 1897.
												 doi: 10.1039/C3OB42384K
											
										
				Reade, S. P.; Mahon, M. F.; Whittlesey, M. K. J. Am. Chem. Soc. 2009, 131, 1861.
										
				Murphy, E. F.; Murugavel, R.; Roesky, H. W. Chem. Rev. 1997, 97, 3425.
												 doi: 10.1021/cr960365v
											
										
				Torrens, H. Coord. Chem. Rev. 2005, 249, 1957.
												 doi: 10.1016/j.ccr.2005.01.025
											
										
				Vela, J.; Smith, J. M.; Yu, Y.; Ketterer, N. A.; Flaschenriem, C. J.; Lachicotte, R. J.; Holland, P. L. J. Am. Chem. Soc. 2005, 127, 7857.
												 doi: 10.1021/ja042672l
											
										
				Fahey, D. R.; Mahan, J. E. J. Am. Chem. Soc. 1977, 99, 2501.
												 doi: 10.1021/ja00450a017
											
										
				Fahey, D. R.; Mahan, J. E. J. Am. Chem. Soc. 1977, 99, 522.
										
				Reinhold, M.; McGrady, J. E.; Perutz, R. N. J. Am. Chem. Soc. 2004, 126, 5268.
												 doi: 10.1021/ja0396908
											
										
				Nova, A.; Erhardt, S.; Jasim, N. A. Perutz, R. N.; Macgregor, S. A.; McGrady, J. E.; Whitwood, A. C. J. Am. Chem. Soc. 2008, 130, 15499.
												 doi: 10.1021/ja8046238
											
										
				Schaub, T.; Fischer, P.; Steffen, A.; Braun, T.; Radius, U.; Mix, A. J. Am. Chem. Soc. 2008, 130, 9304.
												 doi: 10.1021/ja074640e
											
										
				Arndtsen, B. A.; Bergman, R. G.; Mobley, T. A.; Peterson, T. H. Acc. Chem. Res. 1995, 28, 154.
												 doi: 10.1021/ar00051a009
											
										
				Jasim, N. A.; Perutz, R. N.; Whitwood, A. C.; Braun, T.; Izundu, J.; Neumann, B.; Rothfeld, S.; Stammler, H. G. Organometallics 2004, 23, 6140.
												 doi: 10.1021/om049448p
											
										
				Macgregor, S. A.; Roe, D. C.; Marshall, W. J.; Bloch, K. M.; Bakhmutov, V. I.; Grushin, V. V. J. Am. Chem. Soc. 2005, 127, 15304.
												 doi: 10.1021/ja054506z
											
										
				Kozuch, S.; Amatore, C.; Jutand, A.; Shaik, S. Organometallics 2005, 24, 2319.
												 doi: 10.1021/om050160p
											
										
				Blum, O.; Frolow, F.; Milstein, D. J. Chem. Soc., Chem. Commun. 1991, 258.
										
				Su, M.; Chu, S. Inorg. Chem. 1998, 37, 3400.
												 doi: 10.1021/ic970320s
											
										
				Erhardt, S.; Macgregor, S. A. J. Am Chem. Soc. 2008, 130, 15490.
												 doi: 10.1021/ja804622j
											
										
				Johnson, S. A.; Mroz, N. M.; Valdizon, R.; Murray, S. Organometallics 2011, 30, 441.
												 doi: 10.1021/om100699d
											
										
				McKay, D.; Riddlestone, I. M.; Macgregor, S. A.; Mahon, M. F.; Whittlesey, M. K. ACS Catal. 2015, 5, 776.
												 doi: 10.1021/cs501644r
											
										
				Yoshikai, N.; Matsuda, H.; Nakamura, E. J. Am. Chem. Soc. 2009, 131, 9590.
												 doi: 10.1021/ja903091g
											
										
				Macgregor, S. A.; McKay, D.; Panetier, J. A.; Whittlesey, M. K. Dalton Trans. 2013, 42, 7386.
												 doi: 10.1039/c3dt32962c
											
										
				Jaiswal, A. K.; Goh, K. K. K.; Sung, S.; Young, R. D. Org. Lett. 2017, 19, 1934.
												 doi: 10.1021/acs.orglett.7b00712
											
										
				Jia, X.; Guo, P.; Duan, J.; Shu, X. Chem. Sci. 2018, 9, 640.
												 doi: 10.1039/C7SC03140H
											
										
				Honda, K.; Harris, T. V.; Hatanaka, M.; Morokuma, K.; Mikami K.; Chem.-Eur. J. 2016, 22, 8796.
												 doi: 10.1002/chem.201601090
											
										
				Erickson, L. W.; Lucas, E. L.; Tollefson, E. J.; Jarvo, E. R. J. Am. Chem. Soc. 2016, 138, 14006.
												 doi: 10.1021/jacs.6b07567
											
										
				Xu, Z. Y.; Yang, Y. N.; Jiang, J. L.; Fu, Y. Organometallics 2018, 37, 1114.
												 doi: 10.1021/acs.organomet.7b00894
											
										
				Zell, T.; Schaub, T.; Radacki, K.; Radius, U. Dalton Trans. 2011, 40, 1852.
												 doi: 10.1039/c0dt01442g
											
										
				Ichitsuka, T.; Fujita, T.; Arita, T.; Ichikawa, J. Angew. Chem., Int. Ed. 2014, 53, 7564.
												 doi: 10.1002/anie.201402695
											
										
				Ichitsuka, T.; Fujita, T.; Ichikawa, J. ACS Catal. 2015, 5, 5947.
												 doi: 10.1021/acscatal.5b01463
											
										
				Zhang, X. M.; Liu, Y. X.; Chen, G.; Pei, G. J.; Bi, S. W. Organometallics 2017, 36, 3739.
												 doi: 10.1021/acs.organomet.7b00514
											
										
				Chen, W. J.; Xu, R. N.; Lin, W. M.; Sun, X. J.; Wang, B.; Wu, Q. H.; Huang, X. Front. Chem. 2018, 6, 319.
												 doi: 10.3389/fchem.2018.00319
											
										
 
						
						
						
	                Yan Qi , Yueqin Yu , Weisi Guo , Yongjun Liu . 过渡金属参与的有机反应案例教学与实践探索. University Chemistry, 2025, 40(6): 111-117. doi: 10.12461/PKU.DXHX202411021
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
Hongting Yan , Aili Feng , Rongxiu Zhu , Lei Liu , Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010
Aili Feng , Xin Lu , Peng Liu , Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072
Guowen Xing , Guangjian Liu , Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058
Ling Fan , Meili Pang , Yeyun Zhang , Yanmei Wang , Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024
Lijun Yang . Thoughts and Practices on Enhancing Students’ Comprehension through Visualized Instruction of Structural Chemistry. University Chemistry, 2025, 40(10): 295-302. doi: 10.12461/PKU.DXHX202411048
Jiabo Huang , Quanxin Li , Zhongyan Cao , Li Dang , Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
Zihan Lin , Wanzhen Lin , Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089
Yong Wang , Yingying Zhao , Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095
Zhi Chai , Huashan Huang , Xukai Shi , Yujing Lan , Zhentao Yuan , Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046
Bolin Sun , Jie Chen , Ling Zhou . 乙烯型卤代烃的亲核取代反应. University Chemistry, 2025, 40(8): 152-157. doi: 10.12461/PKU.DXHX202410032
Lixing ZHANG , Yaowen WANG , Xu HAN , Junhong ZHOU , Jinghui WANG , Liping LI , Guangshe LI . Research progress in the synthesis of fluorine-containing perovskites and their derivatives. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1689-1701. doi: 10.11862/CJIC.20250007
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087
Qian Huang , Zhaowei Li , Jianing Zhao , Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018
Lancanghong Chen , Xingtai Yu , Tianlei Zhao , Qizhi Yao . Exploration of Abnormal Phenomena in Iodometric Copper Quantitation Experiment. University Chemistry, 2025, 40(7): 315-320. doi: 10.12461/PKU.DXHX202408089
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019
The energies were determined by DFT with the BP86 functional in benzene solvent. The relative free energies (ΔG) in benzene are given in kcal/mol. The bond lengths are in angstroms.
The energies were determined by DFT with the M11-L functional in hexane solvent. The relative free energies (ΔG) in hexane are given in kcal/mol
The energies were determined by DFT with the BP86 functional in THF solvent. The relative free energies (ΔG) in THF are given in kcal/mol. The bond lengths are in angstroms
The energies were determined by DFT with the BP86 functional in benzene solvent. The relative free energies (ΔG) in benzene are given in kcal/mol. The bond lengths are in angstroms
The energies were determined by DFT with the BP86 functional in THF solvent. The relative free energies (ΔG) in THF are given in kcal/mol. The bond lengths are in angstroms
The energies were determined by DFT with the BP86 functional in toluene solvent. The relative free energies (ΔG) in toluene are given in kcal/mol
The energies were determined by DFT with the B3LYP functional in toluene solvent. The relative free energies (ΔG) in toluene are given in kcal/mol. The bond lengths are in angstroms
The energies were determined by DFT with the M06 functional in toluene solvent. The relative free energies (ΔG) in toluene are given in kcal/mol. The bond lengths are in angstroms