Methods and Strategies for the Synthesis of Peduncularine
- Corresponding author: Hong Ran, rhong@sioc.ac.cn Huang Shahua, shahua@sit.edu.cn
Citation:
Zhang Yuping, Tian Xuechao, Zhang Yan, Hong Ran, Huang Shahua. Methods and Strategies for the Synthesis of Peduncularine[J]. Chinese Journal of Organic Chemistry,
;2019, 39(1): 47-58.
doi:
10.6023/cjoc201810008
(a) Butler, M. S. J. Nat. Prod. 2004, 67, 2141.
(b) Li, J. W.-H.; Vederas, J. C. Science 2009, 325, 161.
(c) Newman, D. J.; Cragg, G. M. J. Nat. Prod. 2016, 79, 629.
(d) DeCorte, B. L. J. Med. Chem. 2016, 59, 9295.
Lawson, A. D. G.; MacCoss, M.; Heer, J. P. J. Med. Chem. 2018, 61, 4283.
doi: 10.1021/acs.jmedchem.7b01120
Over, B.; Wetzel, S.; Grütter, C.; Nakai, Y.; Renner, S.; Rauh, D.; Waldmann, H. Nat. Chem. 2013, 5, 21.
doi: 10.1038/nchem.1506
Bick, I. R. C.; Bremner, J. B.; Preston, N. W.; Calder, I. C. J. Chem. Soc., Chem. Commun. 1971, 1155.
Ros, H.-P.; Kyburz, R.; Preston, N. W.; Gallagher, R. T.; Bick, I. R. C.; Hesse, M. Helν. Chim. Acta 1979, 62, 481.
doi: 10.1002/(ISSN)1522-2675
Bick, I. R. C.; Hai, M. A.; Preston, N. W. Tetrahedron 1985, 41, 3127.
doi: 10.1016/S0040-4020(01)96665-7
Klaver, W. J.; Hiemstra, H.; Speckamp, W. N. J. Am. Chem. Soc. 1989, 111, 2588.
doi: 10.1021/ja00189a036
Dragar, C.; Bick, I. R. C. Phytochemistry 1992, 31, 3601.
doi: 10.1016/0031-9422(92)83734-G
(a) Singh, S. Chem. Rev. 2000, 100, 925.
(b) Pollini, G. P.; Benetti, S.; De Risi, C.; Zanirato, V. Chem. Rev. 2006, 106, 2434.
(a) Carroll, F. I.; Abraham, P.; Parham, K.; Griffith, R. C.; Ahmad, A.; Richard, M. M.; Padilla, F. N.; Witkin, J. M.; Chiang, P. K. J. Med. Chem. 1987, 30, 805.
(b) Carroll, F. I.; Abraham, P.; Mascarella, S. W.; Singh, P.; Moreland, C. G.; Sankar, S. S.; Kwon, Y. W.; Triggle, D. J. J. Med. Chem. 1991, 34, 1436.
Quirante, J.; Vila, X.; Bonjoch, J.; Kozikowski, A. P.; Johnson, K. M. Bioorg. Med. Chem. 2004, 12, 1383.
Holmes, A. B.; Kee, A.; Ladduwahetty, T.; Smith, D. F. J. Chem. Soc., Chem. Commun. 1990, 1412.
Chamberlin, A. R.; Chung, J. Y. L. J. Am. Chem. Soc. 1983, 105, 3653.
doi: 10.1021/ja00349a051
(a) Hiemstra, H.; Speckamp, W. N. Tetrahedron Lett. 1983, 24, 1407.
(b) Hiemstra, H.; Klaver, W. J.; Speckamp, W. N. J. Org. Chem. 1984, 49, 1149.
Thomsen, I.; Clausen, K.; Scheibye, S.; Lawesson, S.-O. Org. Synth. 1984, 62, 158.
doi: 10.15227/orgsyn.062.0158
Robinson, B. Chem. Rev. 1969, 69, 227.
doi: 10.1021/cr60258a004
Rigby, J. H.; Meyer, J. H. Synlett 1999, 860.
Rigby, J. H.; Ateeq, H. S.; Charles, N. R.; Henshilwood, J. A.; Short, K. M. Sugathapala, P. M. Tetrahedron 1993, 49, 5495.
doi: 10.1016/S0040-4020(01)87265-3
McKillop, A.; Hunt, J. D.; Kienzle, F.; Bigham, E.; Taylor, E. C. J. Am. Chem. Soc. 1973, 95, 3635.
doi: 10.1021/ja00792a028
Lin, X.; Stien, D.; Weinreb, S. M. Tetrahedron Lett. 2000, 41, 2333.
doi: 10.1016/S0040-4039(00)00194-5
(a) Hudson, R. F.; Record, K. A. F. J. Chem. Soc., Perkin. 21978, 822.
(b) Lin, X.; Stien, D.; Weinreb, S. M. Org. Lett. 1999, 1, 637.
(a) Washburn, D. G.; Heidebrecht, R. W., Jr.; Martin, S. F. Org. Lett. 2003, 5, 3523.
(b) Martin, S. F. Pure Appl. Chem. 2005, 77, 1207.
(a) Brown, D. S.; Hansson, T.; Ley, S. V. Synlett 1990, 48.
(b) Brown, D. S.; Charreu, P.; Hansson, T.; Ley, S. V. Tetrahedron 1991, 47, 1311.
Roberson, C. W.; Woerpel, K. A. Org. Lett. 2000, 2, 621.
doi: 10.1021/ol9913744
Durst, T.; O'Sullivan, M. J. J. Org. Chem. 1970, 35, 2043.
doi: 10.1021/jo00831a081
Roberson, C. W.; Woerpel, K. A. J. Org. Chem. 1999, 64, 1434.
doi: 10.1021/jo982375x
Dubé, D.; Scholte, A. A. Tetrahedron Lett. 1999, 40, 2295.
doi: 10.1016/S0040-4039(99)00211-7
Groaning, M. D.; Brengel, G. P.; Meyers, A. I. J. Org. Chem. 1998, 63, 5517.
doi: 10.1021/jo9805652
Tamao, K.; Ishida, N.; Tanaka, T.; Kumada, M. Organometallics 1983, 2, 1694.
doi: 10.1021/om50005a041
Roberson, C. W.; Woerpel, K. A. J. Am. Chem. Soc. 2002, 124, 11342.
doi: 10.1021/ja012152f
Shute, R. E.; Rich, D. H. Synthesis 1987, 346.
(a) Hosomi, A.; Sakurai, H. Tetrahedron Lett. 1976, 17, 1295.
(b) Speckamp, W. N.; Moolenaar, M. J. Tetrahedron 2000, 56, 3817.
Roush, W. R.; Gillis, H. R. J. Org. Chem. 1980, 45, 4283.
doi: 10.1021/jo01310a006
Abdel-Magid, A. F.; Carson, K. G.; Harris, B. D.; Maryanoff, C. A.; Shah, R. D. J. Org. Chem. 1996, 61, 3849.
doi: 10.1021/jo960057x
Smitrovich, J. H.; Woerpel, K. A. J. Org. Chem. 1996, 61, 6044.
doi: 10.1021/jo960921l
Parikh, J. R.; Doering, W. E. J. Am. Chem. Soc. 1967, 89, 5505.
doi: 10.1021/ja00997a067
Cannizzo, L. F.; Grubbs, R. H. J. Org. Chem. 1985, 50, 2386.
doi: 10.1021/jo00213a040
Hodgson, D. M.; Shelton, R. E.; Moss, T. A.; Dekhane, M. Org. Lett. 2010, 12, 2834.
Mann, J.; de Almeida Barbosa L.-C. J. Chem. Soc., Perkin Trans. 1 1992, 787.
Davies, H. M. L.; Cao, G. Tetrahedron Lett. 1998, 39, 5943.
doi: 10.1016/S0040-4039(98)01221-0
Swallen, L. C.; Boord, C. E. J. Am. Chem. Soc. 1930, 52, 651.
doi: 10.1021/ja01365a033
Kitamura, M.; Ihara, R.; Uera, Y.; Narasaka, K. Bull. Chem. Soc. Jpn. 2006, 79, 1552.
doi: 10.1246/bcsj.79.1552
(a) Uchiyama, K.; Ono, A.; Hayashi, Y.; Narasaka, K. Bull. Chem. Soc. Jpn. 1998, 71, 2945.
(b) Uchiyama, K.; Hayashi, Y.; Narasaka, K. Chem. Lett. 1998, 1261.
Kotsuki, H.; Asao, K.; Ohnishi, H. Bull. Chem. Soc. Jpn. 1984, 57, 3339.
Lenz, G. R.; Woo, ; Hawkins, B. L. J. Org. Chem. 1982, 47, 3049.
doi: 10.1021/jo00137a004
(a) Hudrlik, P. F.; Peterson, D. J. Am. Chem. Soc. 1975, 97, 1464.
(b) Johnson, C. R.; Tait, B. D. J. Org. Chem. 1987, 52, 281.
Ragains, J. R.; Winkler, J. D. Org. Lett. 2006, 8, 4437.
doi: 10.1021/ol061577+
(a) Winkler, J. D.; Muller, C. L.; Scott, R. D. J. Am. Chem. Soc. 1988, 110, 4831.
(b) Kwak, Y.-S.; Winkler, J. D. J. Am. Chem. Soc. 2001, 123, 7429.
Comins, D. L; Dehghani. A. Tetrahedron Lett. 1992, 33, 6299.
doi: 10.1016/S0040-4039(00)60957-7
Jigqjinni, V. B.; Wightman, R. H. Tetrahedron Lett. 1982, 23, 117.
doi: 10.1016/S0040-4039(00)97549-X
(a) Kyburz, R.; Schöpp, E.; Hesse, M.; Bick, I. R. C. Helv. Chim. Acta 1979, 62, 2539.
(b) Bick, I. R. C.; Hai, M. A.; Preston, N. W. Tetrahedron Lett. 1988, 29, 3355.
(c) Anderson, B. F.; Robertson, G. B.; Avey, P.; Donovan, W. F.; Bick, I. R. C.; Bremner, J. B.; Finney, A. J.T.; Preston, N. W.; Gallagher, R. T.; Russell, G. B. J. Chem. Soc., Chem. Commun. 1975, 511.
(d) Bittner, M.; Silva, M.; Gopalakrishna, E. M.; Watson, W. H.; Zabel, V.; Matlin, S. A.; Sammes, P. G. J. Chem. Soc., Chem. Commun. 1978, 79.
(a) Bick, I. R. C.; Hai, M. A.; Preston, N. W. Heterocycles 1979, 12, 1563.
(b) Saxton, J. E. Nat. Prod. Rep. 1994, 11, 493.
(c) An elegant review on the biomimetic synthesis study of aristotelia alkaloids, see: Borschberg, H.-J. In The Alkaloids: Chemistry and Pharmacology, Vol. 48, Ed.: Cordell, G. A., Elsevier, Academic Press, 1996, Chapter 3, pp. 191~248.
(a) Lovering, F.; Bikker, J.; Humblet, C. J. Med. Chem. 2009, 52, 6752.
(b) Szychowski, J.; Truchon, J.-F.; Bennani, Y. L. J. Med. Chem. 2014, 57, 9292.
(c) Stockdale, T. P.; Williams. C. M. Chem. Soc. Rev. 2015, 44, 7737.
(a) Tamura, O.; Yanagimachi, T.; Kobayashi, T.; Ishibashi, H. Org. Lett. 2001, 3, 2427.
(b) Zhai, H.-B.; Luo, S.-J.; Ye, C.-F.; Ma, Y.-X. J. Org. Chem. 2003, 68, 8268.
(c) Yeung, Y. Y.; Hong, S.-W.; Corey, E. J. J. Am. Chem. Soc. 2006, 128, 6310.
(d) Grainger, R. S.; Welsh, E. J. Angew. Chem., Int. Ed. 2007, 46, 5477.
(e) Campbell, C. L.; Hassler, C.; Ko, S. S.; Voss, M. E.; Guaciaro, M. A.; Carter, P. H.; Cherney, R. J. J. Org. Chem. 2009, 74, 6368.
Kanchupalli, V.; Katukojvala, S. Angew. Chem., Int. Ed. 2018, 57, 5433.
doi: 10.1002/anie.v57.19
Zhan, Y.-Z.; Liu, T.; Wang, Z.-W. Chem. Eur. J. 2017, 23, 17862.
doi: 10.1002/chem.v23.71
Mackiewicz, P.; Furstoss, R.; Waegell, B. J. Org. Chem. 1978, 43, 3746.
doi: 10.1021/jo00413a026
Liu, T.; Mei, T.-S.; Yu, J.-Q. J. Am. Chem. Soc. 2015, 137, 5871.
doi: 10.1021/jacs.5b02065
Holmes, A. B.; Raithby, P. R.; Thompson, J.; Baxter, A. J. G.; Dixon, J. J. Chem. Soc., Chem. Commun. 1983, 1490.
(a) Callis, D. J.; Thomas, N. F.; Pearson, D. P. J.; Potter, B. V. L. J. Org. Chem. 1996, 61, 4634.
(b) Kumar, P.; Li, P.-H.; Korboukh, I.; Wang, T. L.; Yennawar, H.; Weinreb, S. M. J. Org. Chem. 2011, 76, 2094.
(a) Xie, C.; Luo, J.; Zhang, Y.; Huang, S.-H.; Zhu, L.; Hong, R. Org. Lett. 2018, 20, 2386.
(b) Luo, J.; Xie, C.; Zhang, Y.; Huang, S.-H.; Zhu, L.; Hong, R. Tetrahedron 2018, 74, 5791.
Quirante, J.; Vila, X.; Escolano, C.; Bonjoch, J. J. Org. Chem. 2002, 67, 2323.
doi: 10.1021/jo0163849
Grainger, R. S.; Betou, M.; Male, L.; Pitak, M. B.; Coles, S. J. Org. Lett. 2012, 14, 2234.
doi: 10.1021/ol300605y
Walker, P. D.; Campbell, C. D.; Suleman, A.; Carr, G.; Anderson, E. A. Angew. Chem., Int. Ed. 2013, 52, 9139.
doi: 10.1002/anie.201304186
Yeh, M.-C. P.; Chang, Y.-M.; Lin, H.-H. Adv. Synth. Catal. 2017, 359, 2196.
doi: 10.1002/adsc.v359.13
Chi Li , Jichao Wan , Qiyu Long , Hui Lv , Ying Xiong . N-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016
Yurong Tang , Yunren Shi , Yi Xu , Bo Qin , Yanqin Xu , Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087
Hong RAO , Yang HU , Yicong MA , Chunxin LÜ , Wei ZHONG , Lihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275
Jiahui YU , Jixian DONG , Yutong ZHAO , Fuping ZHAO , Bo GE , Xipeng PU , Dafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1
Guojie Xu , Fang Yu , Yunxia Wang , Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060
Zhuoyan Lv , Yangming Ding , Leilei Kang , Lin Li , Xiao Yan Liu , Aiqin Wang , Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015
Conghao Shi , Ranran Wang , Juli Jiang , Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034
Xiaofeng Xia , Jielian Zhu . Innovative Comprehensive Experimental Design: Synthesis of 6-Fluoro-N-benzoyl Tetrahydroquinoline. University Chemistry, 2024, 39(10): 344-352. doi: 10.12461/PKU.DXHX202405063
Fei Liu , Dong-Yang Zhao , Kai Sun , Ting-Ting Yu , Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047
Jiaqi AN , Yunle LIU , Jianxuan SHANG , Yan GUO , Ce LIU , Fanlong ZENG , Anyang LI , Wenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072
Min WANG , Dehua XIN , Yaning SHI , Wenyao ZHU , Yuanqun ZHANG , Wei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477
Zhanhui Yang , Jiaxi Xu . (m+n+…) or [m+n+…]cycloaddition?. University Chemistry, 2025, 40(3): 387-389. doi: 10.12461/PKU.DXHX202406032
Zhilian Liu , Wengui Wang , Hongxiao Yang , Yu Cui , Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012
Jing WU , Puzhen HUI , Huilin ZHENG , Pingchuan YUAN , Chunfei WANG , Hui WANG , Xiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278
Feiya Cao , Qixin Wang , Pu Li , Zhirong Xing , Ziyu Song , Heng Zhang , Zhibin Zhou , Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094
Tao Wen , Tao Zhang , Changguo Sun , Jinyu Liu . Preparation of Dess-Martin Reagent and Its Application in Oxidizing Cyclohexanol. University Chemistry, 2024, 39(5): 20-26. doi: 10.3866/PKU.DXHX202309055
Keweiyang Zhang , Zihan Fan , Liyuan Xiao , Haitao Long , Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084
Hongling Yuan , Jialin Xie , Jiawei Wang , Jixiang Zhao , Jiayan Liu , Qing Feng , Wei Qi , Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041
Hong Zheng , Xin Peng , Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058
Yanyang Li , Zongpei Zhang , Kai Li , Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020
Reagents and conditions: (a) (1) AcCl, reflux; (2) i-PrNH2, THF, r.t.; (3) AcCl, reflux, 68% (3 steps). (b) NaBH4, EtOH, then H2SO4, 91%, -25 ℃. (c) NaOEt, EtOH, r.t., 99%. (d) LDA, THF, -78 ℃, then ICH2CH2C≡CCH2SiMe3, -117 ℃~r.t., 50%. (e) (1) HCO2H, r.t.; (2) NH3, MeOH, r.t., 87% (2 steps). (f) O3, CH2Cl2, -78 ℃ then Me2S, 97%. (g) NaBH4, EtOH, 0 ℃, 57%. (h) Ac2O, DMAP, pyridine, r.t., 91%. (i) FVT, 600 ℃, 6.7 Pa (0.05 mmHg), 54%. (j) NaOEt, EtOH, r.t., 83%. (k) (COCl)2, DMSO, CH2Cl2, -60 ℃, then Et3N, r.t., 97%. (l) Ph3PMeBr, n-BuLi, THF, reflux, 83%. (m) Lawesson's reagent, toluene, reflux, 95%. (n) MeI, Et2O, 92%. (o) 27, CH2Cl2, THF, 0 ℃. then NaBH3CN, AcOH, 0 ℃. (p) PhNHNH2, 4% aqueous H2SO4, reflux.
Reagents and conditions: (a) KOBn, THF, 0 ℃~r.t., 36%. (b) i-PrNCO, hv, hexane, 37%. (c) Tl(NO3)3, MeOH, 36%. (d) (1) Pd/C, H2, MeOH. (2) H3O+, THF, 81% (2 steps). (e) Pb(OAc)4, Cu(OAc)2, pyridine, PhH, 67%. (f) K2CO3, MeOH, 97%. (g) DMP, 89%. (h) Ph3P=CH2, THF, 48%.
Reagents and conditions: (a) CH2Cl2, 12 kbar, 65%. (b) t-BuSOCl, DIEA; (PhSe)2, CH2Cl2, -50 ℃~r.t., 30%. (c) H2O2, CH2Cl2, 0 ℃~r.t., 90%. (d) BBr3, CH2Cl2, -78~-20 ℃, 83%.
Reagents and conditions: (a) NaBH4, EtOH/HCl, 89%. (b) PhSO2H, CaCl2, CH2Cl2, r.t., 82%. (c) CH2=CHMgBr, ZnCl2, THF, r.t., then H2SO4, 65%. (d) LDA, THF, CH2=CHCH2Br, -78~-20 ℃, 71%. (e) Grubbs-Ⅱ catalyst, 40 ℃, 96%.
Reagents and conditions: (a) s-BuLi, TMEDA, (Ph2CH)Me2SiCl, -45 ℃, 76%. (b) ClSO2NCO, CH2Cl2, -40 ℃, then 25% aqueous Na2SO3, 23 ℃. (c) Me2C(OMe)2, CF3CO2H, Et3SiH, 62%. (d) TBAF, H2O2, KHCO3, KF, DMF, 67%. (e) (COCl)2, DMSO, Et3N, 86%.
Reagents and conditions: (a) s-BuLi, TMEDA, PhMe2SiCl, -45 ℃, 89%. (b) ClSO2NCO, CH2Cl2, -45 ℃, then 25% aqueous Na2SO3, 23 ℃, 62%. (c) n-BuLi, TeocCl (51), -78~23 ℃, 84%. (d) DIBAL-H, EtOH, CSA, -78 ℃, 96%. (e) allyltrimethylsilane, BF3·Et2O, -20 ℃, 88%. (f) 9-BBN, H2O2, 23 ℃, 80%. (g) (COCl)2, DMSO, NEt3, CH2Cl2, -78~23 ℃, 89%. (h) 1, 3-propanediol, 57, p-TsOH, THF, 78%. (i) n-Bu4NF, CH3CN, 65 ℃, then acetone, NaBH(OAc)3, 23 ℃, 81%. (j) (1) t-BuOOH, KH, n-Bu4NF, DMF, 23~65 ℃. (2) Ac2O, DMAP, CH2Cl2, 23 ℃, 57% (2 steps). (k) PhNHNH2·HCl, H2SO4, reflux, 75%. (l) SO3·pyridine, NEt3, DMSO, 23 ℃, 68%. (m) Cp2TiCH2AlClMe2, -45 ℃, 56%.
Reagents and conditions: (a) Et2Zn, toluene, r.t., then Zn/Cu, MeOH, 0 ℃, 36%. (b) F3CCOMe, MeCN, aqueous Na2EDTA, then Oxone, 0 ℃, 87%. (c) allyltrimethylsilane, Me3SiOTf, 2, 6-lutidine, CH2Cl2, r.t., 80%. (d) TBSCl, DMAP, imidazole, DMF, 0 ℃, 90%. (e) LTMP, TMSCl, then NBS, NaHCO3, -78 ℃. (f) Zn/Cu, NH4Cl, 95%. (g) NaBH4, THF/MeOH, -78 ℃, 93%. (h) Zn dust, AcOH, reflux, 80%
Reagents and conditions: (a) LiAlH4, Et2O, r.t., 97%. (b) (1) (COCl)2, DMSO, Et3N, CH2Cl2, -60 ℃; (2) 27, THF, -78 ℃, 64% (2 steps). (c) (1) (COCl)2, DMSO, Et3N, CH2Cl2, -60 ℃; (2) NH2OH·HCl, pyridine, EtOH, r.t., 72% (2 steps). (d) 2, 4-dinitrofluorobenzene, NaH, DMF, -20 ℃, 80%. (e) 3, 4-methylenedioxyphenol (78), NaH; (PhSe)2, r.t., 93%, exo/endo > 99/1. (f) lithium naphthalenide, THF, then MeOH, -78 ℃. (g) allyloxycarbonyl chloride (AllocCl), pyridine, CH2Cl2, -40 ℃ 75% (2 steps). (h) SO3·pyridine, Et3N, DMSO, CH2Cl2, 80%. (i) Et3SiCH2MgCl, Et2O, -78 ℃~r.t., 81%. (j) NaBH3CN, AcOH, CH2Cl2, 0 ℃~r.t., 69%. (k) KH, THF, r.t., 87%. (l) (1) Pd(PPh3)4, piperidine, CH3CN, r.t.; (2) i-PrI, EtN(i-Pr)2, CH3CN, 50 ℃, 72% (2 steps). (m) PhNHNH2·HCl, H2SO4, H2O, reflux, 63%.
Reagents and conditions: (a) (1) SOCl2, MeOH, r.t.; (2) (Boc)2O, CH3CN, r.t.; (3) TBSCl, DMAP, CH2Cl2 (47%, 3 steps). (b) LiBH4, THF, 0 ℃~ r.t., 86%. (c) SO3·pyridine, NEt3, DMSO, r.t., 84%. (d) PPh3CH3Br, KHMDS, THF, -78 ℃~r.t., 85%. (e) (1) TFA, H2O, CH2Cl2, r.t.; (2) 3-butyn-2-one, CH2Cl2, r.t.; (3) (MeOCO)2O, CH3CN, DMAP, (70%, 3 steps). (f) Grubbs-Ⅱ catalyst, 90, CH2Cl2, reflux, 76%. (g) hv, CH3CN, 29 ℃, 61% (92/93=1/5). (h) KHMDS, N-(2-pyridyl)-trifluoromethanesulfonimide (Comins'reagent 94), THF, -78 ℃, 84%. (i) H2 (101 kPa)/Pd-C, Li2CO3, MeOH, 82%. (j) TsOH·H2O, EtOH, r.t. to reflux.