Citation: Ma Hongpeng, Bai Chaolumen, Bao Yongsheng. Nano-Gold Catalyzed Transesterification of (Hetero) aryl Esters with Alkyl Halides via C-O Activation[J]. Chinese Journal of Organic Chemistry, ;2019, 39(3): 734-746. doi: 10.6023/cjoc201809027 shu

Nano-Gold Catalyzed Transesterification of (Hetero) aryl Esters with Alkyl Halides via C-O Activation

  • Corresponding author: Bao Yongsheng, sbbys197812@163.com
  • Received Date: 21 September 2018
    Revised Date: 1 November 2018
    Available Online: 25 March 2018

    Fund Project: the Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region NJYT-17-A22the National Natural Science Foundation of China 21861030the National Natural Science Foundation of China 21462031the Project of Inner Mongolia Normal University 2013ZRYB10Project supported by the National Natural Science Foundation of China (Nos. 21462031, 21861030), the Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region (No. NJYT-17-A22) and the Project of Inner Mongolia Normal University (No. 2013ZRYB10)

Figures(7)

  • Nano-gold catalyzed transesterification of the (hetero) aryl ester with alkyl halides via C-O activation has been developed. In a series of supported AuNPs and PdNPs, the Au/γ-Al2O3 catalyst with an AuNP mean diameter of 3.63 nm and 3 wt% Au loading exhibited the best catalytic performance. The catalyst can be reused and shows high activity after five cycles. The X-ray photoelectron spectroscopy (XPS) analysis of the catalyst before and after the reaction suggested that the reaction might be performed via a catalytic cycle that began with Au0.
  • 加载中
    1. [1]

      (a) Otera, J.; Nishikido, J. Esterification: Methods, Reactions, and Application, Wiley, Hoboken, NJ, 2009, p. 1.
      (b) Larock, R. C. Comprehensive Organic Transformation: A Guide to Functional Group Preparations, Wile-VCH, New York, 1999, Vol. 1, pp. 1~2640.
      (c) Nguyen, J. D.; D'Amato, E. M.; Narayanam, J. M.; Stephenson, C. R. Nat. Chem. 2012, 4, 854.
      (d) Takei, T. Advances in Catalysis, Elsevier, Tokyo, 2012, 55, pp. 1~126.

    2. [2]

      (a) Haruta, M. Gold Bull. 2004, 37, 27.
      (b) Hughes, M. D.; Xu, Y. J.; Jenkins, P.; McMorn, P.; Landon, P.; Enache, D. I.; Carley, A. F.; Attard, G. A.; Hutchings, G. J.; King, F.; Stitt, E. H.; Johnston, P.; Griffin, K.; Kiely, C. J. Nature 2005, 437, 1132.
      (c) Haruta, M.; Ueda, A.; Tsubota, S.; Sanchez, R. M. T. Catal. Today 1996, 29, 443.
      (d) Deng, X. Y.; Friend, C. M. J. Am. Chem. Soc. 2005, 127, 17178.
      (e) Valden, M.; Lai, X.; Goodman, D. W. Science 1998, 281, 1647.
      (f) Fu, Q.; Saltsburg, H.; Flytzani-Stephanopoulos, M. Science 2003, 301, 935.
      (g) Hutchings, G. J. J. Catal. 1985, 96, 292.
      (h) Hayashi, T.; Tanaka, K.; Haruta, M. J. Catal. 1998, 178, 566.
      (i) Prati, L.; Rossi, M. J. Catal. 1998, 176, 552.
      (j) Santra, A. K.; Kolmakov, A.; Yang, F.; Goodman, D. W. Science 1998, 281, 1647.

    3. [3]

      (a) Mallat, T.; Baiker, A. Chem. Rev. 2004, 104, 3037.
      (b) Prati, L.; Rossi, M. J. Catal. 1998, 176, 552.

    4. [4]

      (a) Abad, A.; Concepción, P.; Corma, A.; García, H. Angew. Chem., Int. Ed. 2005, 44, 4066.
      (b) Su, F. Z.; Liu, Y. M.; Wang, L. C.; Cao, Y.; He, H. Y.; Fan, K. N. Angew. Chem., Int. Ed. 2008, 47, 334.
      (c) Abad, C. A.; Corma, A. A.; Garcia, H. Chem. Commun. 2006, 3178.
      (d) Choudhary, V. R.; Dhar, A.; Jana, P.; Jha, R.; Uphade, B. S. Green Chem. 2005, 7, 768.
      (e) Choudhary, V. R.; Dhar, A.; Jana, P. Green Chem. 2007, 9, 267.
      (f) Wang, L. C.; Liu, Y. M.; Chen, M.; Cao, Y.; He, H. Y.; Fan, K. N. J. Phys. Chem. C 2008, 112, 6981.
      (g) Wang, L.-C.; He, L.; Liu, Q.; Liu, Y.-M.; Chen, M.; Cao, Y.; He, H.-Y.; Fan, K.-N. Appl. Catal., A: Chem. 2008, 344, 150.
      (h) Su, F. Z.; Chen, M.; Wang, L. C.; Huang, X. S.; Liu, Y. M.; Cao, Y.; He, H. Y.; Fan, K. N. Catal. Commun. 2008, 9, 1027.

    5. [5]

      (a) Biella, S.; Prati, L.; Rossi, M. J. Mol. Catal. A: Chem. 2003, 197, 207.
      (b) Corma, A.; Domine, M. E. Chem. Commun. 2005, 4042.
      (c) Marsden, C.; Taarning, E.; Hansen, D.; Johansen, L.; Klitgaard, S. K.; Egeblad, K.; Christensen, C. H. Green Chem. 2008, 10, 168.
      (d) Fristrup, P.; Johansen, L. B.; Christensen, C. H. Chem. Commun. 2008, 2750.
      (e) Laursen, A. B.; Hojholt, K. T.; Lundegaard, L. F.; Simonsen, S. B.; Helveg, S.; Schuth, F.; Paul, M.; Grunwaldt, J. D.; Kegnoes, S.; Christensen, C. H.; Egeblad, K. Angew. Chem., Int. Ed. 2010, 49, 3504.
      (f) Xu, B.; Liu, X.; Haubrich, J.; Friend, C. M. Nat. Chem. 2011, 2, 61.

    6. [6]

      (a) Grirrane, A.; Corma, A.; García, H. Science 2008, 322, 1661.
      (b) Zhu, B.; Lazar, M.; Trewyn, B. G.; Angelici, R. J. J. Catal. 2008, 260, 1.
      (c) Grirrane, A.; Corma, A.; García, H. J. Catal. 2009, 264, 138-144.
      (d) Aschwanden, L.; Mallat, T.; Grunwaldt, J.-D.; Krumeich, F.; Baiker, A. J. Mol. Catal. A Chem. 2009, 300, 111.
      (e) Ishida, T.; Kawakita, N.; Akita, T.; Haruta, M. Gold Bull. 2009, 42, 267-274.
      (f) Zhu, B. Angelici, R. J. Chem. Commun. 2007, 2157.

    7. [7]

      (a) Zhao, R.; Ji, D.; Lv, G.; Qian, G.; Yan, L.; Wang, X.; Suo, J. Chem. Commun. 2004, 904.
      (b) Chen, L.; Hu, J.; Richards, R. J. Am. Chem. Soc. 2009, 131, 914.
      (c) Wu, P.; Bai, P.; Loh, K. P.; Zhao, X. S. Catal. Today 2010, 158, 220.
      (d) Wu, P.; Xiong, Z.; Loh, K. P.; Zhao, X. S. Catal. Sci. Technol. 2011, 1, 285.
      (e) Lu, G.; Zhao, R.; Qian, G. Catal. Lett. 2004, 97, 115.
      (f) Dapurkar, S. E.; Shervani, Z.; Yokoyama, T.; Ikushima, Y.; Kawanami, H. Catal. Lett. 2009, 130, 42.

    8. [8]

      Fristrup, P.; Johansen, L. B.; Christensen, C. H. Chem. Commun. 2008, 2750.

    9. [9]

      (a) Rodríguez, N.; Gooß en, J. L. Chem. Soc. Rev. 2011, 40, 5030.
      (b) Correa, A.; Cornella, J.; Martin, R. Angew. Chem., Int. Ed. 2013, 52, 1878.
      (c) Zarate, C.; Martin, R. J. Am. Chem. Soc. 2014, 136, 2236.
      (d) Quasdorf, K. W.; Tian, X.; Garg, N. K. J. Am. Chem. Soc. 2008, 130, 14422.
      (e) Guan, B. T.; Wang, Y.; Li, B. J.; Yu, D. J.; Shi, Z. J. J. Am. Chem. Soc. 2008, 130, 14468.
      (f) Yu, D. G.; Li, B. J.; Shi, Z. J. Acc. Chem. Res. 2010, 43, 1486.
      (g) Takise, R.; Muto, K.; Yamaguchi, J.; Itami, K. Angew. Chem., Int. Ed. 2014, 53, 6791.
      (h) Cornella, J.; Jackson, E. P.; Martin, R. Angew. Chem., Int. Ed. 2015, 54, 4075.
      (i) Yang, J.; Chen, T.; Han, H. B. J. Am. Chem. Soc. 2015, 137, 1782.
      (j) Gu, Y.; Martin, R. Angew. Chem., Int. Ed. 2017, 56, 3187.
      (k) Tobisu, M.; Yamakawa, K.; Shimasaki, T.; Chatani, N. Chem. Commun. 2011, 47, 2946.
      (l) Guo, L.; Hsiao, C. C.; Yue, H.; Liu, X.; Rueping, M. ACS Catal. 2016, 6, 4438.

    10. [10]

      (a) Muto, K.; Yamaguchi, J.; Musaev, D. G.; Itami, K. Nat. Commun. 2015, 6, 7508.
      (b) Ben Halima, T.; Zhang, W.; Yalaoui, I.; Hong, X.; Yang, Y.-F.; Houk, K. N.; Newman, S. G. J. Am. Chem. Soc. 2017, 139, 1311.
      (c) Pu, X.; Hu, J.; Zhao, Y.; Shi, Z. ACS Catal. 2016, 6, 6692.
      (d) Amaike, K.; Muto, K.; Yamaguchi, J.; Itami, K. J. Am. Chem. Soc. 2012, 134, 13573.
      (e) Guo, L.; Chatupheeraphat, A.; Rueping, M. Angew. Chem., Int. Ed. 2016, 55, 11810.
      (f) Yamamoto, T.; Ishizu, J.; Kohara, T.; Komiya, S.; Yamamoto, A. J. Am. Chem. Soc. 1980, 102, 3758.

    11. [11]

      Bao, Y. S.; Baiyin, M.; Agula, B.; Jia, M. L.; Bao, Z. J. Org. Chem. 2014, 79, 6715.

    12. [12]

      (a) Bianchi, C.; Porta, F.; Prati, L.; Rossi, M. Top. Catal. 2000, 13, 231.
      (b) Porta, F.; Prati, L.; Rossi, M.; Coluccia, S.; Martra, G. Catal. Today 2000, 61, 165.
      (c) Haruta, M.; Date, M. Appl. Catal., A 2001, 222, 427.
      (d) Porta, F.; Prati, L.; Rossi, M.; Scari, G. J. Catal. 2002, 211, 464.
      (e) Seker, E.; Gulari, E. Appl. Catal., A 2002, 232, 203.
      (f) Xu, Q.; Kharas, K. C. C.; Datye, A. K. Catal. Lett. 2003, 85, 229.
      (g) Grunwaldt, J. D.; Kiener, C.; Wogerbauer, C.; Baiker, A. J. Catal. 1999, 181, 223.
      (h) Porta, F.; Rossi, M. J. Mol. Catal., A 2003, 204, 553.
      (i) Biella, S.; Porta, F.; Prati, L.; Rossi, M. Catal. Lett. 2003, 90, 23.

    13. [13]

      Chen, Y.; Somsen, C.; Milenkovic, S.; Hassel, A. W. J. Mater. Chem. 2009, 19, 924.

    14. [14]

      Rozita, Y.; Brydson, R.; Comyn, T. P.; Scott, A, J.; Hammond, C.; Brown, A.; Chauruka, S.; Hassanpour, A.; Young, N. P.; Kirkland, A. I. ChemCatChem 2013, 5, 2695.

    15. [15]

      Chen, J.; Namila, E.; Bai, C.; Baiyin, M.; Agula, B.; Bao, Y. S. RSC Adv. 2018, 8, 25168.

    16. [16]

      Tatamidani, H.; Kakiuchi, F.; Chatani, N. Org. Lett. 2004, 6, 3597.  doi: 10.1021/ol048513o

    17. [17]

      Zhu, H. Y.; Ke, X. B.; Yang, X. Z.; Sarina, S.; Liu, H. W. Angew. Chem., Int. Ed. 2010, 49, 9657.  doi: 10.1002/anie.201003908

    18. [18]

      Hu, Y.; Li, B. Tetrahedron 2017, 73, 7301.  doi: 10.1016/j.tet.2017.11.025

    19. [19]

      Kong, W.; Li, B.; Xu, X.; Song, Q. J. Org. Chem. 2016, 81, 8436.  doi: 10.1021/acs.joc.6b01594

    20. [20]

      Farid, S. Y.; Robello, D. R.; Dinnocenzo, J. P.; Merkel, P. B.; Ferrar, L.; Roh, Y.; Mis, M. R. US 20050136357, 2005.

    21. [21]

      Hosangadi, B.; Dave, R. H. Tetrahedron Lett. 1996, 37, 6375.

    22. [22]

      Lee, P. H.; Lee, S. W.; Lee, K. Org. Lett. 2003, 5, 1103.  doi: 10.1021/ol034167j

    23. [23]

      Nakatani, Y.; Koizumi, Y.; Yamasaki, R.; Saito, S. Org. Lett. 2008, 10, 2067.

    24. [24]

      Fel'dman, I. K.; Eidlin, A. M.; Sbornik, S. O. K. 1953, 1, 504.

    25. [25]

      Wang, L.; Neumann, H.; Spannenberg, A.; Beller, M. Chem. Commun. 2017, 53, 7469.

    26. [26]

      CAS NUMBER: 1481434-06-3.

    27. [27]

      Wang, G., Xu, Y., Zhang, S., Li, Z., Li, C. Green. Chem. 2017, 19, 4838.  doi: 10.1039/C7GC02265D

    28. [28]

      Koziakov, D., Jacobi von Wangelin, A. Org. Biom. Chem. 2017, 15, 6715.

    29. [29]

      Ray, R.; Jana, R. D.; Bhadra, M.; Maiti, D.; Lahiri, G. K. Chem.-Eur. J. 2014, 20, 15618.  doi: 10.1002/chem.v20.47

    30. [30]

      Gao, M.; Chen, M.; Li, Y.; Tang, H.; Ding, H.; Wang, K.; Yang, L.; Li, C.; Lei, A. Asian J. Org. Chem. 2017, 6, 1566.  doi: 10.1002/ajoc.v6.11

    31. [31]

      CAS NUMBER: 500344-32-1.

    32. [32]

      Terakado, D.; Koutaka, H.; Oriyama, T. Tetrahedron:Asymmetry 2005, 16, 1157.  doi: 10.1016/j.tetasy.2005.01.034

    33. [33]

      Pathak, G.; Das, D.; Rokhum, L. RSC Adv. 2016, 6, 93729.  doi: 10.1039/C6RA22558F

    34. [34]

      Ren, L.; Wang, L.; Lv, Y.; Li, G.; Gao, S. Org. Lett. 2015, 17, 5172.  doi: 10.1021/acs.orglett.5b02479

    35. [35]

      Ayala, C. E.; Villalpando, A.; Nguyen, A. L.; McCandless, G. T.; Kartika, R. Org. Lett. 2012, 14, 3676.  doi: 10.1021/ol301520d

    36. [36]

      Chen, H.; Wang, G.; Han, J.; Xu, M.; Zhao, Y.; Xu, H. Tetrahedron 2014, 70, 212.  doi: 10.1016/j.tet.2013.11.085

    37. [37]

      Wang, Q.; Wang, Z.; Xu, Y.; Zhang, X.; Fan, X. Asian J. Org. Chem. 2016, 5, 1304.  doi: 10.1002/ajoc.v5.11

    38. [38]

      Zhang, X.; Xu, X.; Li, N.; Liang, Z.; Tang, Z. Tetrahedron 2018, 74, 1926.  doi: 10.1016/j.tet.2018.02.057

  • 加载中
    1. [1]

      Yinghui Xia Yixi Lin Zhenming Xu . Cation potential guiding structural regulation of lithium halide superionic conductors. Chinese Journal of Structural Chemistry, 2025, 44(3): 100448-100448. doi: 10.1016/j.cjsc.2024.100448

    2. [2]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    3. [3]

      Pan LiuYanming SunAlberto J. Fernández-CarriónBowen ZhangHui FuLunhua HeXing MingCongling YinXiaojun Kuang . Bismuth-based halide double perovskite Cs2KBiCl6: Disorder and luminescence. Chinese Chemical Letters, 2024, 35(5): 108641-. doi: 10.1016/j.cclet.2023.108641

    4. [4]

      Xiuwen XuQuan ZhouYacong WangYunjie HeQiang WangYuan WangBing Chen . Expanding the toolbox of metal-free organic halide perovskite for X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109272-. doi: 10.1016/j.cclet.2023.109272

    5. [5]

      Jiajing Wu Ru-Ling Tang Sheng-Ping Guo . Three types of promising functional building units for designing metal halide nonlinear optical crystals. Chinese Journal of Structural Chemistry, 2024, 43(6): 100291-100291. doi: 10.1016/j.cjsc.2024.100291

    6. [6]

      Huan Hu Ying Zhang Shi-Shuang Huang Zhi-Gang Li Yungui Liu Rui Feng Wei Li . Temperature- and pressure-responsive photoluminescence in a 1D hybrid lead halide. Chinese Journal of Structural Chemistry, 2024, 43(10): 100395-100395. doi: 10.1016/j.cjsc.2024.100395

    7. [7]

      Jiayuan Liang Xin Mi Songhao Guo Hui Luo Kejun Bu Tonghuan Fu Menglin Duan Yang Wang Qingyang Hu Rengen Xiong Peng Qin Fuqiang Huang Xujie Lü . Pressure-induced emission in 0D metal halide (EATMP)SbBr5 by regulating exciton-phonon coupling. Chinese Journal of Structural Chemistry, 2024, 43(7): 100333-100333. doi: 10.1016/j.cjsc.2024.100333

    8. [8]

      Han YanJingming YaoZhangran YeQiaoquan LinZiqi ZhangShulin LiDawei SongZhenyu WangChuang YuLong Zhang . Al-F co-doping towards enhanced electrolyte-electrodes interface properties for halide and sulfide solid electrolytes. Chinese Chemical Letters, 2025, 36(1): 109568-. doi: 10.1016/j.cclet.2024.109568

    9. [9]

      Mufan CaoLong PanYaping WangXianwei SuiXiong Xiong LiuShengfa FengPengcheng YuanMin GaoJiacheng LiuSong-Zhu Kure-ChuTakehiko HiharaYang ZhouZheng-Ming Sun . Mechanical-durable and humidity-resistant dry-processed halide solid-state electrolyte films for all-solid-state battery. Chinese Chemical Letters, 2025, 36(6): 110391-. doi: 10.1016/j.cclet.2024.110391

    10. [10]

      Le HanZhou YuanBohan LiYuchi ZhangLin YangYan Xu . Highly-stable cesium lead halide perovskite CsPbBr3/CsPb2Br5 heteronanocrystals in zeolitic imidazolate framework-8 for antibiotic photodegradation. Chinese Chemical Letters, 2025, 36(6): 110349-. doi: 10.1016/j.cclet.2024.110349

    11. [11]

      Jijoe Samuel Prabagar Kumbam Lingeshwar Reddy Dong-Kwon Lim . Visible-light responsive gold nanoparticle and nano-sized Bi2O3-x sheet heterozygote structure for efficient photocatalytic conversion of N2 to NH3. Chinese Journal of Structural Chemistry, 2025, 44(4): 100564-100564. doi: 10.1016/j.cjsc.2025.100564

    12. [12]

      Shaonan Tian Yu Zhang Qing Zeng Junyu Zhong Hui Liu Lin Xu Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160

    13. [13]

      Lin Zhang Chaoran Li Thongthai Witoon Xingda An Le He . Nano-thermometry in photothermal catalysis. Chinese Journal of Structural Chemistry, 2025, 44(4): 100456-100456. doi: 10.1016/j.cjsc.2024.100456

    14. [14]

      Zhi LiWenpei LiShaoping JiangChuan HuYuanyu HuangMaxim ShevtsovHuile GaoShaobo Ruan . Legumain-triggered aggregable gold nanoparticles for enhanced intratumoral retention. Chinese Chemical Letters, 2024, 35(7): 109150-. doi: 10.1016/j.cclet.2023.109150

    15. [15]

      Peiwen LiuFang ZhaoJing ZhangYunpeng BaiJinxing YeBo BaoXinggui ZhouLi ZhangChanglu ZhouXinhai YuPeng ZuoJianye XiaLian CenYangyang YangGuoyue ShiLin XuWeiping ZhuYufang XuXuhong Qian . Micro/nano flow chemistry by Beyond Limits Manufacturing. Chinese Chemical Letters, 2024, 35(5): 109020-. doi: 10.1016/j.cclet.2023.109020

    16. [16]

      Hong Yin Zhipeng Yu . Hexavalent iridium catalyst enhances efficiency of hydrogen production. Chinese Journal of Structural Chemistry, 2025, 44(1): 100382-100382. doi: 10.1016/j.cjsc.2024.100382

    17. [17]

      Xiangqian CaoChenkai YangXiaodong ZhuMengxin ZhaoYilin YanZhengnan HuangJinming CaiJingming ZhuangShengzhou LiWei LiBing Shen . Synergistic enhancement of chemotherapy for bladder cancer by photothermal dual-sensitive nanosystem with gold nanoparticles and PNIPAM. Chinese Chemical Letters, 2024, 35(8): 109199-. doi: 10.1016/j.cclet.2023.109199

    18. [18]

      Min HuangRu ChengShuai WenLiangtong LiJie GaoXiaohui ZhaoChunmei LiHongyan ZouJian Wang . Ultrasensitive detection of microRNA-21 in human serum based on the confinement effect enhanced chemical etching of gold nanorods. Chinese Chemical Letters, 2024, 35(9): 109379-. doi: 10.1016/j.cclet.2023.109379

    19. [19]

      Ji LiuDongsheng HeTianjiao HaoYumin HuYan ZhaoZhen LiChang LiuDaquan ChenQiyue WangXiaofei XinYan Shen . Gold mineralized "hybrid nanozyme bomb" for NIR-II triggered tumor effective permeation and cocktail therapy. Chinese Chemical Letters, 2024, 35(9): 109296-. doi: 10.1016/j.cclet.2023.109296

    20. [20]

      Ya-Wen Zhang Ming-Ming Gan Li-Ying Sun Ying-Feng Han . Supramolecular dinuclear silver(I) and gold(I) tetracarbene metallacycles and fluorescence sensing of penicillamine. Chinese Journal of Structural Chemistry, 2024, 43(9): 100356-100356. doi: 10.1016/j.cjsc.2024.100356

Metrics
  • PDF Downloads(4)
  • Abstract views(1899)
  • HTML views(81)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return