Citation: Chen Yaqi, Gui Xin, Duan Zunbin, Zhu Lijun, Xiang Yuzhi, Xia Daohong. Transition Metal Catalyzed Organic Reaction Involving Cyclodextrin[J]. Chinese Journal of Organic Chemistry, ;2019, 39(5): 1284-1292. doi: 10.6023/cjoc201809012 shu

Transition Metal Catalyzed Organic Reaction Involving Cyclodextrin

  • Corresponding author: Xia Daohong, xiadh@upc.edu.cn
  • Received Date: 6 September 2018
    Revised Date: 3 December 2018
    Available Online: 18 May 2019

    Fund Project: the the National Natural Science Foundation of China 21376265Project supported by the the National Natural Science Foundation of China (No. 21376265)

Figures(10)

  • Cyclodextrin is a kind of cyclic oligosaccharide which is composed of the D-pyran glucose units connected with the α-1, 4-glycosidic bond. Cyclodextrin has the rigidly tapered cavity of hydrophobic inner and hydrophilic outer. Cyclodextrin has been attracted more and more attention from scientists since it was discovered, owning to its special space cavity of hydrophilic inner and hydrophilic outer. As an important industrial catalyst, transition metal catalyst can combine with the cyclodextrin system to simultaneously exert the catalytic properties of the metal and the molecular recognition and phase transfer of cyclodextrin, which greatly improves its catalytic performance. In this paper, the transition metal catalyzed organic reactions involving cyclodextrin are reviewed, and these reactions are described in terms of the metal valence from 0 to 4. Finally, the development and foreground of these co-catalyst systems involving metal and cyclodextrin are prospected. It is expected that the catalytic system will have a wider application in the future, and a more efficient and selective catalytic system will be continuously developed.
  • 加载中
    1. [1]

      Lai, E.; Jean, M.; Shen, X. H. M. Supramolecular Chemistry:Concepts and Prospects, Peking University Press, Beijing, 2002 (in Chinese).

    2. [2]

      Xia, D. H.; Jiang, S. J.; Li, L.-L.; Xiang, Y. Z.; Zhu, L. J. Chin. J. Chem. Eng. 2016, 24, 146.  doi: 10.1016/j.cjche.2015.06.008

    3. [3]

      Tong, L. H. M. Cyclodextrin Chemistry-Basics and Applications, Science Press, Beijing, 2001 (in Chinese).

    4. [4]

      Shen, H. M.; Ji, H. B. Chin. J. Org. Chem. 2011, 32, 791(in Chinese),
       

    5. [5]

      Zhao, Y.; Huang, Y.; Zhu, H.; Zhu, Q.; Xia, Y. J. Am. Chem. Soc. 2016, 138, 16645.  doi: 10.1021/jacs.6b07590

    6. [6]

      Menuel, S.; Léger, B.; Addad, A.; Monflier, E.; Hapiot, F. Green Chem. 2016, 18, 5500.  doi: 10.1039/C6GC00770H

    7. [7]

      Stewart, M. E.; Anderton, C. R.; Thompson, L. B.; Maria, J.; Gray, S. K.; Rogers, J.A.; Nuzzo, R. G. Chem. Rev. 2008, 108, 494.  doi: 10.1021/cr068126n

    8. [8]

      Xiao, J.; Qi, L. Nanoscale 2011, 3, 1383.  doi: 10.1039/c0nr00814a

    9. [9]

      Shanmugam, M.; Kim, K. J. Electroanal. Chem. 2016, 776, 82.  doi: 10.1016/j.jelechem.2016.06.009

    10. [10]

      Cravotto, G.; Gaudino, E. C.; Tagliapietra, S.; Carnaroglio, D.; Procopio, A. Green Proc. Synth. 2012, 1, 269.

    11. [11]

      Hein, J. E.; Tripp, J. C.; Krasnova, L. B.; Sharpless, K. B.; Fokin, V. V. Angew. Chem., Int. Ed. 2009, 48, 8018.  doi: 10.1002/anie.v48:43

    12. [12]

      Dheer, D.; Rawal, R. K.; Singh, V.; Sangwan, P. L.; Das, P.; Shankar, R. Tetrahedron 2017, 73, 4295.  doi: 10.1016/j.tet.2017.05.081

    13. [13]

      Patil, R. N.; Vijay Kumar, A. ACS Omega 2017, 2, 6405.  doi: 10.1021/acsomega.7b00898

    14. [14]

      Messmer, E. Z. Phys. Chem. 1927, 126, 369.

    15. [15]

      Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed. 2001, 113, 2056.  doi: 10.1002/(ISSN)1521-3757

    16. [16]

      Krasinski, A.; Radic, Z.; Manetsch, R.; Raushel, J.; Taylor, P.; Sharpless, K. B.; Kolb, H. C. J. Am. Chem. Soc. 2004, 126, 12809.  doi: 10.1021/ja046382g

    17. [17]

      Hein, J. E.; Tripp, J. P.; Krasnova, L. B.; Sharpless, K. B.; Fokin, V. V. Angew. Chem., Int. Ed. 2009, 48, 1.  doi: 10.1002/anie.200890275

    18. [18]

      Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem., Int. Ed. 2002, 41, 2596.  doi: 10.1002/(ISSN)1521-3773

    19. [19]

      Tornoe, C. W.; Christensen, C.; Meldal, M. J. Org. Chem. 2002, 67, 3057.  doi: 10.1021/jo011148j

    20. [20]

      Aprahamian, I.; Dichtel, W. R.; Ikeda, T.; Heath, J. R.; Stoddart, J. F. Org. Lett. 2007, 9, 1287.  doi: 10.1021/ol070052u

    21. [21]

      Yigit, S.; Sanyal, R.; Sanyal, A. Chem. Asian J. 2011, 6, 2648.  doi: 10.1002/asia.v6.10

    22. [22]

      Yamada, Y. M. A.; Sarkar, S. M.; Uozumi, Y. J. Am. Chem. Soc. 2012, 134, 9285.  doi: 10.1021/ja3036543

    23. [23]

      Collinson, J.-M.; Wilton-Ely, J. D. E. T.; Diez-Gonzalez, S. Chem. Commun. 2013, 49, 11358.  doi: 10.1039/c3cc44371j

    24. [24]

      Xiong, X.; Chen, H.; Tang, Z.; Jiang, Y. RSC Adv. 2014, 4, 9830.  doi: 10.1039/c3ra45994b

    25. [25]

      White, J. R.; Price, G. J.; Schiffers, S.; Raithby, P. R.; Plucinski, P. K.; Frost, C. G. Tetrahedron Lett. 2010, 51, 3913.  doi: 10.1016/j.tetlet.2010.05.104

    26. [26]

      Brotherton, W. S.; Michaels, H. A.; Simmons, J. T.; Clark, R. J.; Dalal, N. S.; Zhu, L. Org. Lett. 2009, 11, 4954.  doi: 10.1021/ol9021113

    27. [27]

      Hein, J. E.; Fokin, V. V. Chem. Soc. Rev. 2010, 39, 1302.  doi: 10.1039/b904091a

    28. [28]

      Zhu, L.; Lynch, V. M.; Ansly, E. V. Tetrahedron 2004, 60, 7267.  doi: 10.1016/j.tet.2004.06.079

    29. [29]

      Zhang, H.; Tanimoto, H.; Morimoto, T.; Nishiyama, Y.; Kakiuchi, K. Tetrahedron 2014, 70, 9828.  doi: 10.1016/j.tet.2014.10.076

    30. [30]

      Ramesh, C.; Banerjee, J.; Pal, R.; Das, B. Adv. Synth. Catal. 2003, 345, 557.  doi: 10.1002/adsc.200303022

    31. [31]

      Sheng, S. R.; Wang, Q. Y.; Ding, Y.; Liu, X. L.; Cai, M. Z. Catal Lett. 2009, 128, 418.  doi: 10.1007/s10562-008-9767-z

    32. [32]

      Reddi, M. N. K.; Satheesh, K. B.; Anil, K. M.; Arulselvan, P.; Ibrahim, K. S.; Lasekan, O. Molecules 2012, 17, 7543.  doi: 10.3390/molecules17067543

    33. [33]

      Ramesh, C.; Banerjee, J.; Pal, R.; Das, B. ChemInform 2010, 345, 557.
       

    34. [34]

      Dabbawala, A. A.; Sudheesh, N.; Bajaj, H. C. Dalton. Trans. 2012, 41, 2910.  doi: 10.1039/c2dt11924b

    35. [35]

      Datta, K. K. R.; Srinivasan, B.; Balaram, H.; Eswaramoorthy, M. J Chem. Sci. 2008, 120, 579.  doi: 10.1007/s12039-008-0088-y

    36. [36]

      Nie, R.; Sang, R.; Ma, X.; Zheng, Y.; Cheng, X.; Li, W.; Wu, Y. J. Catal. 2016, 344, 286.  doi: 10.1016/j.jcat.2016.09.022

    37. [37]

      Yao, Z.; Hong, S.; Zhang, W.; Liu, M.; Deng, W. Tetrahedron Lett. 2016, 57, 910.  doi: 10.1016/j.tetlet.2016.01.049

    38. [38]

      Zhang, P.; Meijide, S. J.; Driant, T.; Derat, E.; Zhang, Y.; Ménand, M. Angew. Chem. 2017, 129, 10961.  doi: 10.1002/ange.201705303

    39. [39]

      (a) Kaboudin, B.; Abedi, Y.; Yokomatsu, T. Eur. J. Org. Chem. 2011, 6656.
      (b) Kaboudin, B.; Abedi, Y.; Yokomatsu, T. Org. Biomol. Chem. 2012, 10, 4543.

    40. [40]

      Kaboudin, B.; Mostafalu, R.; Yokomatsu, T. ChemInform 2013, 44, 2262.

    41. [41]

      Perez, A. L.; Moseguer, J. O.; Marques, P. R.; Corma, A. Angew. Chem., Int. Ed. 2013, 125, 11768.  doi: 10.1002/ange.201303188

    42. [42]

      Hoffmann, I.; Blumenröder, B.; Thumann, S. O. N.; Dommer, S.; Schatz, J. Green Chem. 2015, 17, 3844.  doi: 10.1039/C5GC00794A

    43. [43]

      Saito, N.; Taniguchi, T.; Hoshiya, N.; Shuto, S.; Arisawa, M.; Sato, Y. Green Chem. 2015, 17, 2358.  doi: 10.1039/C4GC02469A

    44. [44]

      (a) Zhong, R.; Pöthig, A.; Feng, Y.; Riener, K.; Herrmann, W. A.; Kühn, F. E. Green Chem. 2014, 16, 4955.
      (b) Billingsley, K.; Buchwald, S. L. J. Am. Chem. Soc. 2007, 38, 3358.
      (c) Old, D. W.; Wolfe, J. P.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 30, 4369.
      (d) Martin R.; Buchwald, S. L. Acc. Chem. Res. 2008, 41, 1461.
      (e) Vellakkaran, M.; Andappan, M. M. S.; Kommu, N. Green Chem. 2014, 16, 2788.

    45. [45]

      Raihana, I. K.; Kasi, P. Green Chem. 2016, 18, 4791.  doi: 10.1039/C6GC90091G

    46. [46]

      Qi, M.; Tan, P. Z. Xue, F.; Malhi, H. S.; Zhang, Z. X.; Young, D. J. Rsc. Adv. 2014, 5, 3590.

    47. [47]

      Zhou, X.; Guo, X.; Jian, F.; Wei, G. ACS Omega 2018, 3, 4418.  doi: 10.1021/acsomega.8b00469

    48. [48]

      Guo, Y.; Li, J.; Zhao, F.; Lan, G.; Li, L.; Liu, Y.; Yang, R. RSC Adv. 2016, 6, 7950.  doi: 10.1039/C5RA23271F

    49. [49]

      Imran, K. R.; Pitchumani, K. ACS Sustainable Chem. Eng, 2018.

    50. [50]

      Poulos, T. L. Chem. Rev. 2014, 114, 3919.  doi: 10.1021/cr400415k

    51. [51]

      Sreenilayam, G.; Fasan, R. Chem. Commun. 2015, 51, 1532.  doi: 10.1039/C4CC08753D

    52. [52]

      Xu, X.; Li, C.; Tao, Z.; Pan, Y. Adv. Synth. Catal. 2015, 357, 3341.  doi: 10.1002/adsc.201500418

    53. [53]

      Wang, M. L.; Fang, G. D; Liu, P. Appl. Catal., B 2016, 188, 113.  doi: 10.1016/j.apcatb.2016.01.071

    54. [54]

      Guo, Y.; Guo, S.; Ren, J.; Zhai, Y.; Dong, S.; Wang, E. ACS Nano. 2010, 4, 4001.  doi: 10.1021/nn100939n

    55. [55]

      Sharavath, V.; Sarkar, S.; Gandla, D.; Ghosh, S. Electrochim. Acta 2016, 210, 385.  doi: 10.1016/j.electacta.2016.05.177

    56. [56]

      Mohamed, M. A.; Shukla, A.; Sandhya, K. Y. Environ. Prog. Sustainable 2016, 35, 1283.  doi: 10.1002/ep.v35.5

    57. [57]

      Subramanian, R.; Ponnusamy, V. J. Mater. Sci.: Mater. Electron. 2016, 28, 1.

    58. [58]

      Sun, N.; Wang, T.; Liu, C. Wood. Sci. Tenol. 2016, 50, 1.  doi: 10.1007/s00226-015-0797-6

  • 加载中
    1. [1]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    2. [2]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    3. [3]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    4. [4]

      Yan Qi Yueqin Yu Weisi Guo Yongjun Liu . 过渡金属参与的有机反应案例教学与实践探索. University Chemistry, 2025, 40(6): 111-117. doi: 10.12461/PKU.DXHX202411021

    5. [5]

      Zuozhong Liang Lingling Wei Yiwen Cao Yunhan Wei Haimei Shi Haoquan Zheng Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103

    6. [6]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    7. [7]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    8. [8]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    9. [9]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    10. [10]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    11. [11]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    12. [12]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    13. [13]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    14. [14]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    15. [15]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    16. [16]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    17. [17]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    18. [18]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    19. [19]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    20. [20]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

Metrics
  • PDF Downloads(19)
  • Abstract views(2021)
  • HTML views(522)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return