Progress in Difunctionalization of Alkenes
- Corresponding author: Zhao Wenxian, zhwx2595126@163.com
Citation: Fu Xiaofei, Zhao Wenxian. Progress in Difunctionalization of Alkenes[J]. Chinese Journal of Organic Chemistry, ;2019, 39(3): 625-647. doi: 10.6023/cjoc201808031
(a) Gaich, T.; Baran, P. S. J. Org. Chem. 2010, 75, 4657.
(b) Wender, P. A. Chem. Rev. 1996, 96, 1.
(a) Xu, L.; Mou, X. Q.; Chen, Z. M.; Wang, S. H. Chem. Commun. 2014, 50, 10676.
(b) Beccalli, E. M.; Broggini, G.; Martinelli, M.; Sottocornola, S. Chem. Rev. 2007, 107, 5318.
(c) Jensen, K. H.; Sigman, M. S. Org. Biomol. Chem. 2008, 6, 4083.
(d) Chemler, S. R. Org. Biomol. Chem. 2009, 7, 3009.
(e) Muniz, K. Angew. Chem., Int. Ed. 2009, 48, 9412.
(f) Li, G.; Kotti, S. R. S. S.; Timmons, C. Eur. J. Org. Chem. 2007, 2745.
(a) Zhou, M. B.; Wang, C. Y.; Song, R. J.; Liu, Y.; Wei, W. T.; Li, J. H. Chem. Commun. 2013, 49, 10817.
(b) Mu, X.; Wu, T.; Wang, H. Y. Guo, Y. L.; Liu, G. J. Am. Chem. Soc. 2012, 134, 878.
(c) Wu, T.; Mu, X.; Liu, G. Angew. Chem., Int. Ed. 2011, 50, 12578.
(d) Zhou, S. L.; Guo, L. N.; Wang, S.; Duan, X. H. Chem. Commun. 2014, 50, 3589.
(a) Keith, J. A; Henry, P. M. Angew. Chem., Int. Ed. 2009, 48, 9038.
(b) McDonald, R. I.; Liu, G. S.; Stahl, S. S. Chem. Rev. 2011, 111, 2981.
(a) Zhang, X.; You, S. L. Chem 2017, 3, 919.
(b) Lucet, D.; Le Gall, T.; Mioskowski, C. Angew. Chem., Int. Ed. 1998, 37, 2580.
Yuan, W.; Du, H.; Zhao, B.; Shi, Y. Org. Lett. 2007, 9, 2589.
doi: 10.1021/ol071105a
Du, H.; Zhao, B.; Yuan, W.; Shi, Y. Org. Lett. 2008, 10, 4231.
doi: 10.1021/ol801605w
Zhao, B.; Peng, X, ; Cui, S.; Shi, Y. J. Am. Chem. Soc. 2010, 132, 11009.
doi: 10.1021/ja103838d
Zhao, B.; Peng, X.; Zhu, Y.; Ramirez, T. A.; Comwall, R. G.; Shi, Y. J. Am. Chem. Soc. 2011, 133, 20890.
doi: 10.1021/ja207691a
Zhu, Y. G.; Shi, Y. Chem.-Eur. J. 2014, 20, 13901.
doi: 10.1002/chem.v20.43
Sequeira, F. C.; Turnpenny, B. W.; Chemler, S. R. Angew. Chem. 2010, 122, 6509.
doi: 10.1002/ange.201003499
Wang, Y. F.; Zhu, X.; Chiba, S. J. Am. Chem. Soc. 2012, 134, 3679.
doi: 10.1021/ja2120629
Turnpenny, B. W.; Chemler, S. R. Chem. Sci. 2014, 5, 1786.
doi: 10.1039/C4SC00237G
Karyakarte, S. D.; Sequeira, F. C.; Zibreg, G. H.; Huang, G. Q.; Matthew, J. P.; Ferreira, M. M. M.; Chemler, S. R. Tetrahedron Lett. 2015, 56, 3686.
doi: 10.1016/j.tetlet.2015.01.171
Shen, K.; Wang, Q. Chem. Sci. 2015, 6, 4279.
doi: 10.1039/C5SC00897B
Khoder, Z. M.; Wong, C. E.; Chemler, S. R. ACS Catal. 2017, 7, 4775.
doi: 10.1021/acscatal.7b01362
Weng, S. S.; Hsieh, K. Y.; Zeng, Z. J. Zhang, J. W. Tetrahedron Lett. 2017, 58, 670.
doi: 10.1016/j.tetlet.2017.01.015
Wang, F. L.; Dong, X. Y.; Lin, J. S.; Zeng, Y.; Jiao, G. Y.; Gu, Q. S.; Guo, X. Q.; Ma, C. L.; Liu, X. Y. Chem 2017, 3, 979.
doi: 10.1016/j.chempr.2017.10.008
Chen, M. M.; Wang, L. J.; Ren, P. X.; Hou, X. Y.; Zhang, F.; Han, M. Nan.; Li, W. Org. Lett. 2018, 20, 510.
doi: 10.1021/acs.orglett.7b03401
Fu, S. M.; Yang, H. H.; Li, G. Q.; Deng, Y. F.; Jiang, H. F.; Zeng, W. Org. Lett. 2015, 17, 1018.
doi: 10.1021/acs.orglett.5b00131
Kinnel, R. B.; Gehrken, H. P.; Scheuer, P. J. J. Am. Chem. Soc. 1993, 115, 3376.
doi: 10.1021/ja00061a065
Li, S. Q.; Xiong, P.; Zhu, L.; Qian, X. Y.; Xu, H. C. Eur. J. Org. Chem. 2016, 20, 3449.
Shen, K.; Wang, Q. Chem. Sci. 2017, 8, 8265.
doi: 10.1039/C7SC03420B
Shen, K.; Wang, Q. J. Am. Chem. Soc. 2017, 139, 13110.
doi: 10.1021/jacs.7b06852
Pan, G. H.; Ouyang, X. H.; Hu, M.; Xie, Y. X.; Li, J. H. Adv. Synth. Catal. 2017, 15, 2564.
doi: 10.1002/adsc.201700365
Zhang, Y, L.; Wang, M.; Cao, P.; Liao, J. Acta Chim. Sinica 2017, 75, 794(in Chinese).
Gockel, S. N.; Buchanan, T. L.; Hull, K. L. J. Am. Chem. Soc. 2018, 140, 58.
doi: 10.1021/jacs.7b10529
Zeng, W.; Chemler, S. R. J. Am. Chem. Soc. 2007, 129, 12948.
doi: 10.1021/ja0762240
Miao, L.; Haque, I.; Manzoni, M. R.; Tham, W. S.; Chemler, S. R. Org. Lett. 2010, 12, 4739.
doi: 10.1021/ol102233g
Kaneko, K.; Yoshino, T.; Matsunaga, S.; Kanai, M. Org. Lett. 2013, 15, 2502.
doi: 10.1021/ol4009848
Wang, D. H.; Wu, L. Q.; Wang, F.; Wan, X. L.; Chen, P. H.; Lin, Z. Y.; Liu, G. S. J. Am. Chem. Soc. 2017, 139, 6811.
doi: 10.1021/jacs.7b02455
Miller, Y.; Miao, L.; Hosseini, A. S.; Chemler, R. S. J. Am. Chem. Soc. 2012, 134, 12149.
doi: 10.1021/ja3034075
Zhou, S. L.; Guo, L. N.; Wang, H.; Duan, X. H. Chem.-Eur. J. 2013, 19, 12970.
doi: 10.1002/chem.v19.39
Zhou, B.; Hou, W.; Yang, Y.; Feng, H.; Li, Y. Org. Lett. 2014, 167, 1322.
doi: 10.1002/chin.201434141
Shi, L.; Wang, Y.; Yang, H.; Fu, H. Org. Biomol. Chem. 2014, 12, 4070.
doi: 10.1039/C4OB00576G
Li, X.; Jian, X.; Zhang, P.; Gao, Y.; Wu, J.; Tang, G.; Zhao, Y. Synlett 2014, 25, 2009.
doi: 10.1055/s-00000083
Schlosser, M. Angew. Chem., Int. Ed. 2006, 45, 5432.
doi: 10.1002/(ISSN)1521-3773
Liang, Z.; Wang, F.; Chen, P.; Liu, G. S. Org. Lett. 2015, 17, 2438.
doi: 10.1021/acs.orglett.5b00939
Egami, H.; Shimizu, R.; Kawamura, S.; Sodeoka, M. Angew. Chem., Int. Ed. 2013, 52, 4000.
doi: 10.1002/anie.v52.14
Yang, F.; Klumphu, P.; Liang, Y. M.; Lipshutz, B. H. Chem. Commun. 2014, 50, 936.
doi: 10.1039/C3CC48131J
Egami, H.; Kawamura, S.; Miyazaki, A.; Sodeoka, M. Angew. Chem., Int. Ed. 2013, 52, 7841.
doi: 10.1002/anie.v52.30
Lin, J. S.; Liu, X. G.; Zhu, X. L.; Tan, B.; Liu, X. Y. J. Org. Chem. 2014, 79, 7084.
doi: 10.1021/jo5012619
Lin, J. S.; Xiong, Y. P.; Ma, C. L.; Zhao, L. J.; Tan, B.; Liu, X. Y. Chem.-Eur. J. 2014, 20, 1332.
doi: 10.1002/chem.v20.5
Lin, J. S.; Dong, X. Y.; Li, T. T.; Jiang, N. C.; Tan, B.; Liu, X. Y. J. Am. Chem. Soc. 2016, 138, 9357.
doi: 10.1021/jacs.6b04077
Shen, K.; Wang, Q. Org. Chem. Front. 2016, 3, 222.
doi: 10.1039/C5QO00353A
Lin, J. S.; Wang, F. L.; Dong, X. Y.; He, W. W.; Yuan, Y.; Chen, S.; Liu, X. Y. Nat. Commun. 2017, 8, 14841.
doi: 10.1038/ncomms14841
Zhu, R.; Buchwald, S. L. J. Am. Chem. Soc. 2012, 134, 12462.
doi: 10.1021/ja305840g
Zhu, R.; Buchwald, S. L. Angew. Chem., Int. Ed. 2013, 52, 12655.
doi: 10.1002/anie.201307790
Jiang, X. Y.; Qing, F. L. Angew. Chem., Int. Ed. 2013, 52, 14177.
doi: 10.1002/anie.201307595
Ye, J. H.; Song, L.; Zhou, W. J.; Ju, T.; Yin, Zh. B.; Yan, S. S.; Zhang, Z.; Li, J.; Yu, D. G. Angew. Chem., Int Ed. 2016, 34, 10022.
doi: 10.1002/chin.201651141
Cheng, Y. F.; Dong, X. Y.; Gu, Q. S.; Yu, Z. L.; Liu, X. Y. Angew. Chem. 2017, 30, 9009.
doi: 10.1002/ange.201702925
Li, X. T.; Gu, Q. S.; Dong, X. Y.; Meng, X.; Liu, X. Y. Angew. Chem., Int. Ed. 2018, 57, 7668.
doi: 10.1002/anie.v57.26
Li, Z. L.; Li, X. H.; Wang, N.; Yang, N. Y.; Liu, X. Y. Angew. Chem., Int. Ed. 2016, 55, 15100.
doi: 10.1002/anie.201608198
Liu, Z. C.; Bai, Y. H.; Zhang, J.; Yu, Y. Q.; Tan, Z.; Zhu, G. G. Chem. Commun. 2017, 53, 6440.
doi: 10.1039/C7CC02537H
Fu, L.; Zhou, S.; Wan, X. L.; Chen, P. H.; Liu, G. S. J. Am. Chem. Soc. 2018, 140, 10965.
doi: 10.1021/jacs.8b07436
(a) Brase, S.; Gil, C.; Knepper, K.; Zimmermann, V. Angew. Chem., Int. Ed. 2005, 44, 5188.
(b) Drivel, T. G. Org. Biomol. Chem. 2010, 8, 3831.
(c) Fumagalli, G.; Rabet, P. T. G.; Boyd, S.; Greaney, M. F. Angew. Chem., Int. Ed. 2015, 54, 11481.
(a) Rong, J.; Han, J.; Dong, L.; Tan, Y.; Yang, H.; Feng, L.; Wang, Q. W.; Meng, R.; Zhao, J.; Wang, S. Q.; Chen. X. J. Am. Chem. Soc. 2014, 136, 17468.
(b) Gramlich, P. M. E.; Wirges, C. T.; Manetto, A.; Carell, T. Angew. Chem., Int. Ed. 2008, 47, 8350.
Yin, H.; Wang, T.; Jiao, N. Org. Lett. 2014, 16, 2302.
doi: 10.1021/ol500793c
Zhu, L.; Yu, H.; Xu, Z.; Jiang, X.; Lin, L.; Wang, R. Org. Lett. 2014, 16, 1562.
doi: 10.1021/ol403687k
Zhu, R.; Buchwald, S. L. J. Am. Chem. Soc. 2015, 137, 8069.
doi: 10.1021/jacs.5b04821
Lu, M. Z.; Wang, C. Q.; Loh, T. P. Org. Lett. 2015, 17, 6110.
doi: 10.1021/acs.orglett.5b03130
Zhou, H.; Jian, W. J.; Qian, B.; Ye, C. Q.; Li, D. L.; Zhou, J.; Bao, H. L. Org. Lett. 2017, 19, 6120.
doi: 10.1021/acs.orglett.7b02982
Bunescu, A.; Ha, T. M.; Wang, Q.; Zhu, J. P. Angew. Chem., Int. Ed. 2017, 56, 10555.
doi: 10.1002/anie.v56.35
Xu, L.; Mou, X. Q.; Chen, Z. M.; Wang, S. H. Chem. Commun. 2014, 50, 10676.
doi: 10.1039/C4CC04640D
Wang, D. H.; Wang, F.; Chen, P. H.; Lin, Z. Y.; Liu, G. S. Angew. Chem., Int. Ed. 2017, 8, 2054.
doi: 10.1002/anie.201405937
Qian, Bo.; Xiong, H. G.; Zhu, N. B.; Ye, C. Q.; Jian, W. J.; Bao, H. L. Tetrahedron Lett. 2016, 57, 3400.
doi: 10.1016/j.tetlet.2016.06.087
Hemric, B. N.; Shen, K.; Wang, Q. J. Am. Chem. Soc. 2016, 138, 5813.
doi: 10.1021/jacs.6b02840
Ha, T. M.; Wang, Q.; Zhu, J. P. Chem. Commun. 2016, 52, 11100.
doi: 10.1039/C6CC06356J
Williamson, K. S.; Yoon, T. P. J. Am. Chem. Soc. 2010, 132, 4570.
doi: 10.1021/ja1013536
Liu, G. S.; Zhang, Y. Q.; Yuan, Y. A.; Xu, H. J. Am. Chem. Soc. 2013, 135, 3343.
doi: 10.1021/ja311923z
Lu, D. F.; Zhu, C. L.; Jia, Z. X.; Xu, H. J. Am. Chem. Soc. 2014, 136, 13186.
doi: 10.1021/ja508057u
Yuan, Y. A.; Lu, D. F.; Chen, Y. R.; Xu, H. Angew. Chem. 2016, 128, 544.
doi: 10.1002/ange.201507550
Qian, B.; Chen, S. W.; Wang, T.; Zhang, X. H.; Bao, H. L. J. Am. Chem. Soc. 2017, 139, 13076.
doi: 10.1021/jacs.7b06590
Wang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2011, 133, 19080.
doi: 10.1021/ja2092689
Olson, D. E.; Su, J. Y.; Roberts, D. A.; Bois, J. D. J. Am. Chem. Soc. 2014, 136, 13506.
doi: 10.1021/ja506532h
Piou, T.; Rovis, T. Nature 2015, 527, 86.
doi: 10.1038/nature15691
Ciesielski, J.; Dequirez, G.; Retailleau, P.; Gandon, V.; Dauban, P. Chem.-Eur. J. 2016, 22, 9338.
doi: 10.1002/chem.201600393
Fu, N. K.; Sauer, G. S.; Lin, S. J. Am. Chem. Soc. 2017, 139, 15548.
doi: 10.1021/jacs.7b09388
Sun, H.; Cui, B.; Duan, L. L.; Li, Y. M. Org. Lett. 2017, 19, 1520.
doi: 10.1021/acs.orglett.7b00284
Singh, A. K.; Chawla, R.; Yadav, L. D. S. Tetrahedron Lett. 2014, 55, 4742.
doi: 10.1016/j.tetlet.2014.06.086
Guo, S.; Cong, F.; Guo, R.; Wang, L.; Tang, P. P. Nat. Chem. 2017, 9, 546.
doi: 10.1038/nchem.2711
Fumagalli, G.; Boyd, S.; Greaney, M. F. Org. Lett. 2013, 15, 4398.
doi: 10.1021/ol401940c
Sipos, G.; Ou, A.; Skelton, B. W.; Falivene, L.; Cavallo, L.; Dorta, R. Chem.-Eur. J. 2016, 22, 6939.
doi: 10.1002/chem.201600378
Conway, J. H.; Rovis, T. J. Am. Chem. Soc. 2018, 140, 135.
doi: 10.1021/jacs.7b11455
Martinez, C.; Wu, Y. C.; Weinstein, A. B.; Stahl, S. S.; Liu, G. S.; Muniz, K. J. Org. Chem. 2013, 78, 6309.
doi: 10.1021/jo400671q
Hata, K.; He, Z. H.; Daniliuc, C. G.; Itami, K.; Studer, A. Chem. Commun. 2014, 50, 463.
doi: 10.1039/C3CC47350C
Ramella, V.; He, Z. H.; Daniliuc, C. G.; Studer, A. Org. Lett. 2015, 17, 664.
doi: 10.1021/ol503689r
Yu, F.; Chen, P. H.; Liu, G. S. Chem. Commun. 2016, 52, 11100.
doi: 10.1039/C6CC06356J
Zheng, J. H.; Chen, P.; Yuan, Y. F.; Cheng, J. J. J. Org. Chem. 2017, 82, 5790.
doi: 10.1021/acs.joc.7b00598
Karnakanti, S.; Zang, Z. L.; Zhao, S.; Shao, P. L.; Hu, P.; He, Y. Chem. Commun. 2017, 53, 11205.
doi: 10.1039/C7CC06448A
Qi, X. X.; Chen, C. H.; Hou, Ch. Q.; Fu, L.; Chen, P. H.; Liu, G. S. J. Am. Chem. Soc. 2018, 140, 7415.
doi: 10.1021/jacs.8b03767
Lin, J. S.; Yu, P.; Huang, L.; Zhang, P.; Tan, B.; Liu, X. Y. Angew. Chem., Int. Ed. 2015, 54, 7847.
doi: 10.1002/anie.201501762
Yang, N. Y.; Li, Z. L.; Ye, L.; Tan, B.; Liu, X. Y. Chem. Commun. 2016, 52, 9052.
doi: 10.1039/C6CC00364H
Tsuji, N.; Kennemur, J. L.; Buyck, T.; Lee, S.; Prevost, S.; Kaib, P. S. J.; Bykov, D.; Fares, C.; List, B. Science 2018, 359, 1501.
doi: 10.1126/science.aaq0445
Lu, Q. Q.; Zhang, J.; Wei, F. L.; Qi, Y.; Wang, H. M.; Liu, Z. L.; Lei, A. W. Angew. Chem., Int. Ed. 2013, 52, 7156.
doi: 10.1002/anie.201301634
Chen, H.; Kaga, A.; Chiba, S. Org. Lett. 2014, 16, 6136.
doi: 10.1021/ol503000c
Hong, K. B; Johnston, J. N. Org. Lett. 2014, 16, 3804.
doi: 10.1021/ol501693j
Danneman, M. W.; Hong, K. B.; Johnston, J. N. Org. Lett. 2015, 17, 2558.
doi: 10.1021/acs.orglett.5b01177
Xia, X. F.; Gu, Z.; Liu, W. T.; Wang, H. J.; Xia, Y. M.; Gao, H. Y.; Liu, X.; Liang, Y. M. J. Org. Chem. 2015, 80, 290.
doi: 10.1021/jo502327r
Fei, J.; Wang, Z.; Cai, Z. R.; Sun, H.; Cheng, X. Adv. Synth. Catal. 2015, 357, 4063.
doi: 10.1002/adsc.201500646
Zhou, S. F.; Pan, X. Q.; Zhou, Z. H.; Shoberu, A.; Zou, J. P. J. Org. Chem. 2015, 80, 3682.
doi: 10.1021/acs.joc.5b00123
Huang, L.; Zheng, S. C.; Tan, B.; Liu, X. Y. Org. Lett. 2015, 17, 1589.
doi: 10.1021/acs.orglett.5b00479
Chumnanvej, N.; Katrun, P.; Pohmakotr, M.; Reutrakul, V.; Soorukram, D.; Kuhakarn, C. Chin. J. Chem. 2016, 34, 830.
doi: 10.1002/cjoc.v34.8
Zhang, Z. X.; Martinez, H.; Dolbier. W. R. J. Org. Chem. 2017, 82, 2589.
doi: 10.1016/j.jfluchem.2011.05.001
Zhou, S. F.; Song, T.; Chen, H.; Liu, Z. L.; Shen, H. G.; Li, C. Z. Org. Lett. 2017, 19, 698.
doi: 10.1021/acs.orglett.6b03870
Muñiz, K.; Barreiro, L.; Romero, R. M.; Martínez, C. J. Am. Chem. Soc. 2017, 139, 4354.
doi: 10.1021/jacs.7b01443
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087
Shiyan Cheng , Yonghong Ruan , Lei Gong , Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024
Weihan Zhang , Menglu Wang , Ankang Jia , Wei Deng , Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043
Xinyu Zhu , Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene E→Z Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
Hongling Yuan , Jialin Xie , Jiawei Wang , Jixiang Zhao , Jiayan Liu , Qing Feng , Wei Qi , Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
Xunzhang Fan , Yuanjin Zhao , Shufang Luo , Aihua He . Karl Ziegler: A Pioneer in the Polyolefin Industry – Commemorating the 50th Anniversary of the German Chemist’s Passing. University Chemistry, 2024, 39(8): 389-394. doi: 10.3866/PKU.DXHX202312065
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
Yufang GAO , Nan HOU , Yaning LIANG , Ning LI , Yanting ZHANG , Zelong LI , Xiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Minna Ma , Yujin Ouyang , Yuan Wu , Mingwei Yuan , Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
Fengqiao Bi , Jun Wang , Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434