Citation: Fu Xiaofei, Zhao Wenxian. Progress in Difunctionalization of Alkenes[J]. Chinese Journal of Organic Chemistry, ;2019, 39(3): 625-647. doi: 10.6023/cjoc201808031 shu

Progress in Difunctionalization of Alkenes

  • Corresponding author: Zhao Wenxian, zhwx2595126@163.com
  • Received Date: 27 August 2018
    Revised Date: 1 November 2018
    Available Online: 25 March 2018

    Fund Project: the Key Science Research of Education Committee in Henan Province 16A150020Project supported by the National Natural Science Foundation of China (Nos. 20972091, 21172139) and the Key Science Research of Education Committee in Henan Province (No. 16A150020)the National Natural Science Foundation of China 21172139the National Natural Science Foundation of China 20972091

Figures(95)

  • As an important kind of organic chemical reaction, difunctionalization of alkenes can not only synthesize multi-site reaction products effectively in one step, but also transform the starting material into other compounds that containing biological activity or drug activity. At the same time, it provides more methods for the construction of chemical structure diversity, so it is very important to develop the bifunctionalization of alkenes. In this paper, the bifunctionalization of various alkenes in recent 12 years is reviewed. It can be divided into three parts:copper-catalyzed difunctionalization of alkenes, other transition metal-catalyzed difunctionalization of alkenes, and non-metal-catalyzed difunctionalization of alkenes. The prospects of this reaction are also discussed.
  • 加载中
    1. [1]

      (a) Gaich, T.; Baran, P. S. J. Org. Chem. 2010, 75, 4657.
      (b) Wender, P. A. Chem. Rev. 1996, 96, 1.

    2. [2]

      (a) Xu, L.; Mou, X. Q.; Chen, Z. M.; Wang, S. H. Chem. Commun. 2014, 50, 10676.
      (b) Beccalli, E. M.; Broggini, G.; Martinelli, M.; Sottocornola, S. Chem. Rev. 2007, 107, 5318.
      (c) Jensen, K. H.; Sigman, M. S. Org. Biomol. Chem. 2008, 6, 4083.
      (d) Chemler, S. R. Org. Biomol. Chem. 2009, 7, 3009.
      (e) Muniz, K. Angew. Chem., Int. Ed. 2009, 48, 9412.
      (f) Li, G.; Kotti, S. R. S. S.; Timmons, C. Eur. J. Org. Chem. 2007, 2745.

    3. [3]

      (a) Zhou, M. B.; Wang, C. Y.; Song, R. J.; Liu, Y.; Wei, W. T.; Li, J. H. Chem. Commun. 2013, 49, 10817.
      (b) Mu, X.; Wu, T.; Wang, H. Y. Guo, Y. L.; Liu, G. J. Am. Chem. Soc. 2012, 134, 878.
      (c) Wu, T.; Mu, X.; Liu, G. Angew. Chem., Int. Ed. 2011, 50, 12578.
      (d) Zhou, S. L.; Guo, L. N.; Wang, S.; Duan, X. H. Chem. Commun. 2014, 50, 3589.

    4. [4]

      (a) Keith, J. A; Henry, P. M. Angew. Chem., Int. Ed. 2009, 48, 9038.
      (b) McDonald, R. I.; Liu, G. S.; Stahl, S. S. Chem. Rev. 2011, 111, 2981.

    5. [5]

      (a) Zhang, X.; You, S. L. Chem 2017, 3, 919.
      (b) Lucet, D.; Le Gall, T.; Mioskowski, C. Angew. Chem., Int. Ed. 1998, 37, 2580.

    6. [6]

      Yuan, W.; Du, H.; Zhao, B.; Shi, Y. Org. Lett. 2007, 9, 2589.  doi: 10.1021/ol071105a

    7. [7]

      Du, H.; Zhao, B.; Yuan, W.; Shi, Y. Org. Lett. 2008, 10, 4231.  doi: 10.1021/ol801605w

    8. [8]

      Zhao, B.; Peng, X, ; Cui, S.; Shi, Y. J. Am. Chem. Soc. 2010, 132, 11009.  doi: 10.1021/ja103838d

    9. [9]

      Zhao, B.; Peng, X.; Zhu, Y.; Ramirez, T. A.; Comwall, R. G.; Shi, Y. J. Am. Chem. Soc. 2011, 133, 20890.  doi: 10.1021/ja207691a

    10. [10]

      Zhu, Y. G.; Shi, Y. Chem.-Eur. J. 2014, 20, 13901.  doi: 10.1002/chem.v20.43

    11. [11]

      Sequeira, F. C.; Turnpenny, B. W.; Chemler, S. R. Angew. Chem. 2010, 122, 6509.  doi: 10.1002/ange.201003499

    12. [12]

      Wang, Y. F.; Zhu, X.; Chiba, S. J. Am. Chem. Soc. 2012, 134, 3679.  doi: 10.1021/ja2120629

    13. [13]

      Turnpenny, B. W.; Chemler, S. R. Chem. Sci. 2014, 5, 1786.  doi: 10.1039/C4SC00237G

    14. [14]

      Karyakarte, S. D.; Sequeira, F. C.; Zibreg, G. H.; Huang, G. Q.; Matthew, J. P.; Ferreira, M. M. M.; Chemler, S. R. Tetrahedron Lett. 2015, 56, 3686.  doi: 10.1016/j.tetlet.2015.01.171

    15. [15]

      Shen, K.; Wang, Q. Chem. Sci. 2015, 6, 4279.  doi: 10.1039/C5SC00897B

    16. [16]

      Khoder, Z. M.; Wong, C. E.; Chemler, S. R. ACS Catal. 2017, 7, 4775.  doi: 10.1021/acscatal.7b01362

    17. [17]

      Weng, S. S.; Hsieh, K. Y.; Zeng, Z. J. Zhang, J. W. Tetrahedron Lett. 2017, 58, 670.  doi: 10.1016/j.tetlet.2017.01.015

    18. [18]

      Wang, F. L.; Dong, X. Y.; Lin, J. S.; Zeng, Y.; Jiao, G. Y.; Gu, Q. S.; Guo, X. Q.; Ma, C. L.; Liu, X. Y. Chem 2017, 3, 979.  doi: 10.1016/j.chempr.2017.10.008

    19. [19]

      Chen, M. M.; Wang, L. J.; Ren, P. X.; Hou, X. Y.; Zhang, F.; Han, M. Nan.; Li, W. Org. Lett. 2018, 20, 510.  doi: 10.1021/acs.orglett.7b03401

    20. [20]

      Fu, S. M.; Yang, H. H.; Li, G. Q.; Deng, Y. F.; Jiang, H. F.; Zeng, W. Org. Lett. 2015, 17, 1018.  doi: 10.1021/acs.orglett.5b00131

    21. [21]

      Kinnel, R. B.; Gehrken, H. P.; Scheuer, P. J. J. Am. Chem. Soc. 1993, 115, 3376.  doi: 10.1021/ja00061a065

    22. [22]

      Li, S. Q.; Xiong, P.; Zhu, L.; Qian, X. Y.; Xu, H. C. Eur. J. Org. Chem. 2016, 20, 3449.

    23. [23]

      Shen, K.; Wang, Q. Chem. Sci. 2017, 8, 8265.  doi: 10.1039/C7SC03420B

    24. [24]

      Shen, K.; Wang, Q. J. Am. Chem. Soc. 2017, 139, 13110.  doi: 10.1021/jacs.7b06852

    25. [25]

      Pan, G. H.; Ouyang, X. H.; Hu, M.; Xie, Y. X.; Li, J. H. Adv. Synth. Catal. 2017, 15, 2564.  doi: 10.1002/adsc.201700365

    26. [26]

      Zhang, Y, L.; Wang, M.; Cao, P.; Liao, J. Acta Chim. Sinica 2017, 75, 794(in Chinese).
       

    27. [27]

      Gockel, S. N.; Buchanan, T. L.; Hull, K. L. J. Am. Chem. Soc. 2018, 140, 58.  doi: 10.1021/jacs.7b10529

    28. [28]

      Zeng, W.; Chemler, S. R. J. Am. Chem. Soc. 2007, 129, 12948.  doi: 10.1021/ja0762240

    29. [29]

      Miao, L.; Haque, I.; Manzoni, M. R.; Tham, W. S.; Chemler, S. R. Org. Lett. 2010, 12, 4739.  doi: 10.1021/ol102233g

    30. [30]

      Kaneko, K.; Yoshino, T.; Matsunaga, S.; Kanai, M. Org. Lett. 2013, 15, 2502.  doi: 10.1021/ol4009848

    31. [31]

      Wang, D. H.; Wu, L. Q.; Wang, F.; Wan, X. L.; Chen, P. H.; Lin, Z. Y.; Liu, G. S. J. Am. Chem. Soc. 2017, 139, 6811.  doi: 10.1021/jacs.7b02455

    32. [32]

      Miller, Y.; Miao, L.; Hosseini, A. S.; Chemler, R. S. J. Am. Chem. Soc. 2012, 134, 12149.  doi: 10.1021/ja3034075

    33. [33]

      Zhou, S. L.; Guo, L. N.; Wang, H.; Duan, X. H. Chem.-Eur. J. 2013, 19, 12970.  doi: 10.1002/chem.v19.39

    34. [34]

      Zhou, B.; Hou, W.; Yang, Y.; Feng, H.; Li, Y. Org. Lett. 2014, 167, 1322.  doi: 10.1002/chin.201434141

    35. [35]

      Shi, L.; Wang, Y.; Yang, H.; Fu, H. Org. Biomol. Chem. 2014, 12, 4070.  doi: 10.1039/C4OB00576G

    36. [36]

      Li, X.; Jian, X.; Zhang, P.; Gao, Y.; Wu, J.; Tang, G.; Zhao, Y. Synlett 2014, 25, 2009.  doi: 10.1055/s-00000083

    37. [37]

      Schlosser, M. Angew. Chem., Int. Ed. 2006, 45, 5432.  doi: 10.1002/(ISSN)1521-3773

    38. [38]

      Liang, Z.; Wang, F.; Chen, P.; Liu, G. S. Org. Lett. 2015, 17, 2438.  doi: 10.1021/acs.orglett.5b00939

    39. [39]

      Egami, H.; Shimizu, R.; Kawamura, S.; Sodeoka, M. Angew. Chem., Int. Ed. 2013, 52, 4000.  doi: 10.1002/anie.v52.14

    40. [40]

      Yang, F.; Klumphu, P.; Liang, Y. M.; Lipshutz, B. H. Chem. Commun. 2014, 50, 936.  doi: 10.1039/C3CC48131J

    41. [41]

      Egami, H.; Kawamura, S.; Miyazaki, A.; Sodeoka, M. Angew. Chem., Int. Ed. 2013, 52, 7841.  doi: 10.1002/anie.v52.30

    42. [42]

      Lin, J. S.; Liu, X. G.; Zhu, X. L.; Tan, B.; Liu, X. Y. J. Org. Chem. 2014, 79, 7084.  doi: 10.1021/jo5012619

    43. [43]

      Lin, J. S.; Xiong, Y. P.; Ma, C. L.; Zhao, L. J.; Tan, B.; Liu, X. Y. Chem.-Eur. J. 2014, 20, 1332.  doi: 10.1002/chem.v20.5

    44. [44]

      Lin, J. S.; Dong, X. Y.; Li, T. T.; Jiang, N. C.; Tan, B.; Liu, X. Y. J. Am. Chem. Soc. 2016, 138, 9357.  doi: 10.1021/jacs.6b04077

    45. [45]

      Shen, K.; Wang, Q. Org. Chem. Front. 2016, 3, 222.  doi: 10.1039/C5QO00353A

    46. [46]

      Lin, J. S.; Wang, F. L.; Dong, X. Y.; He, W. W.; Yuan, Y.; Chen, S.; Liu, X. Y. Nat. Commun. 2017, 8, 14841.  doi: 10.1038/ncomms14841

    47. [47]

      Zhu, R.; Buchwald, S. L. J. Am. Chem. Soc. 2012, 134, 12462.  doi: 10.1021/ja305840g

    48. [48]

      Zhu, R.; Buchwald, S. L. Angew. Chem., Int. Ed. 2013, 52, 12655.  doi: 10.1002/anie.201307790

    49. [49]

      Jiang, X. Y.; Qing, F. L. Angew. Chem., Int. Ed. 2013, 52, 14177.  doi: 10.1002/anie.201307595

    50. [50]

      Ye, J. H.; Song, L.; Zhou, W. J.; Ju, T.; Yin, Zh. B.; Yan, S. S.; Zhang, Z.; Li, J.; Yu, D. G. Angew. Chem., Int Ed. 2016, 34, 10022.  doi: 10.1002/chin.201651141

    51. [51]

      Cheng, Y. F.; Dong, X. Y.; Gu, Q. S.; Yu, Z. L.; Liu, X. Y. Angew. Chem. 2017, 30, 9009.  doi: 10.1002/ange.201702925

    52. [52]

      Li, X. T.; Gu, Q. S.; Dong, X. Y.; Meng, X.; Liu, X. Y. Angew. Chem., Int. Ed. 2018, 57, 7668.  doi: 10.1002/anie.v57.26

    53. [53]

      Li, Z. L.; Li, X. H.; Wang, N.; Yang, N. Y.; Liu, X. Y. Angew. Chem., Int. Ed. 2016, 55, 15100.  doi: 10.1002/anie.201608198

    54. [54]

      Liu, Z. C.; Bai, Y. H.; Zhang, J.; Yu, Y. Q.; Tan, Z.; Zhu, G. G. Chem. Commun. 2017, 53, 6440.  doi: 10.1039/C7CC02537H

    55. [55]

      Fu, L.; Zhou, S.; Wan, X. L.; Chen, P. H.; Liu, G. S. J. Am. Chem. Soc. 2018, 140, 10965.  doi: 10.1021/jacs.8b07436

    56. [56]

      (a) Brase, S.; Gil, C.; Knepper, K.; Zimmermann, V. Angew. Chem., Int. Ed. 2005, 44, 5188.
      (b) Drivel, T. G. Org. Biomol. Chem. 2010, 8, 3831.
      (c) Fumagalli, G.; Rabet, P. T. G.; Boyd, S.; Greaney, M. F. Angew. Chem., Int. Ed. 2015, 54, 11481.

    57. [57]

      (a) Rong, J.; Han, J.; Dong, L.; Tan, Y.; Yang, H.; Feng, L.; Wang, Q. W.; Meng, R.; Zhao, J.; Wang, S. Q.; Chen. X. J. Am. Chem. Soc. 2014, 136, 17468.
      (b) Gramlich, P. M. E.; Wirges, C. T.; Manetto, A.; Carell, T. Angew. Chem., Int. Ed. 2008, 47, 8350.

    58. [58]

      Yin, H.; Wang, T.; Jiao, N. Org. Lett. 2014, 16, 2302.  doi: 10.1021/ol500793c

    59. [59]

      Zhu, L.; Yu, H.; Xu, Z.; Jiang, X.; Lin, L.; Wang, R. Org. Lett. 2014, 16, 1562.  doi: 10.1021/ol403687k

    60. [60]

      Zhu, R.; Buchwald, S. L. J. Am. Chem. Soc. 2015, 137, 8069.  doi: 10.1021/jacs.5b04821

    61. [61]

      Lu, M. Z.; Wang, C. Q.; Loh, T. P. Org. Lett. 2015, 17, 6110.  doi: 10.1021/acs.orglett.5b03130

    62. [62]

      Zhou, H.; Jian, W. J.; Qian, B.; Ye, C. Q.; Li, D. L.; Zhou, J.; Bao, H. L. Org. Lett. 2017, 19, 6120.  doi: 10.1021/acs.orglett.7b02982

    63. [63]

      Bunescu, A.; Ha, T. M.; Wang, Q.; Zhu, J. P. Angew. Chem., Int. Ed. 2017, 56, 10555.  doi: 10.1002/anie.v56.35

    64. [64]

      Xu, L.; Mou, X. Q.; Chen, Z. M.; Wang, S. H. Chem. Commun. 2014, 50, 10676.  doi: 10.1039/C4CC04640D

    65. [65]

      Wang, D. H.; Wang, F.; Chen, P. H.; Lin, Z. Y.; Liu, G. S. Angew. Chem., Int. Ed. 2017, 8, 2054.  doi: 10.1002/anie.201405937

    66. [66]

      Qian, Bo.; Xiong, H. G.; Zhu, N. B.; Ye, C. Q.; Jian, W. J.; Bao, H. L. Tetrahedron Lett. 2016, 57, 3400.  doi: 10.1016/j.tetlet.2016.06.087

    67. [67]

      Hemric, B. N.; Shen, K.; Wang, Q. J. Am. Chem. Soc. 2016, 138, 5813.  doi: 10.1021/jacs.6b02840

    68. [68]

      Ha, T. M.; Wang, Q.; Zhu, J. P. Chem. Commun. 2016, 52, 11100.  doi: 10.1039/C6CC06356J

    69. [69]

      Williamson, K. S.; Yoon, T. P. J. Am. Chem. Soc. 2010, 132, 4570.  doi: 10.1021/ja1013536

    70. [70]

      Liu, G. S.; Zhang, Y. Q.; Yuan, Y. A.; Xu, H. J. Am. Chem. Soc. 2013, 135, 3343.  doi: 10.1021/ja311923z

    71. [71]

      Lu, D. F.; Zhu, C. L.; Jia, Z. X.; Xu, H. J. Am. Chem. Soc. 2014, 136, 13186.  doi: 10.1021/ja508057u

    72. [72]

      Yuan, Y. A.; Lu, D. F.; Chen, Y. R.; Xu, H. Angew. Chem. 2016, 128, 544.  doi: 10.1002/ange.201507550

    73. [73]

      Qian, B.; Chen, S. W.; Wang, T.; Zhang, X. H.; Bao, H. L. J. Am. Chem. Soc. 2017, 139, 13076.  doi: 10.1021/jacs.7b06590

    74. [74]

      Wang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2011, 133, 19080.  doi: 10.1021/ja2092689

    75. [75]

      Olson, D. E.; Su, J. Y.; Roberts, D. A.; Bois, J. D. J. Am. Chem. Soc. 2014, 136, 13506.  doi: 10.1021/ja506532h

    76. [76]

      Piou, T.; Rovis, T. Nature 2015, 527, 86.  doi: 10.1038/nature15691

    77. [77]

      Ciesielski, J.; Dequirez, G.; Retailleau, P.; Gandon, V.; Dauban, P. Chem.-Eur. J. 2016, 22, 9338.  doi: 10.1002/chem.201600393

    78. [78]

      Fu, N. K.; Sauer, G. S.; Lin, S. J. Am. Chem. Soc. 2017, 139, 15548.  doi: 10.1021/jacs.7b09388

    79. [79]

      Sun, H.; Cui, B.; Duan, L. L.; Li, Y. M. Org. Lett. 2017, 19, 1520.  doi: 10.1021/acs.orglett.7b00284

    80. [80]

      Singh, A. K.; Chawla, R.; Yadav, L. D. S. Tetrahedron Lett. 2014, 55, 4742.  doi: 10.1016/j.tetlet.2014.06.086

    81. [81]

      Guo, S.; Cong, F.; Guo, R.; Wang, L.; Tang, P. P. Nat. Chem. 2017, 9, 546.  doi: 10.1038/nchem.2711

    82. [82]

      Fumagalli, G.; Boyd, S.; Greaney, M. F. Org. Lett. 2013, 15, 4398.  doi: 10.1021/ol401940c

    83. [83]

      Sipos, G.; Ou, A.; Skelton, B. W.; Falivene, L.; Cavallo, L.; Dorta, R. Chem.-Eur. J. 2016, 22, 6939.  doi: 10.1002/chem.201600378

    84. [84]

      Conway, J. H.; Rovis, T. J. Am. Chem. Soc. 2018, 140, 135.  doi: 10.1021/jacs.7b11455

    85. [85]

      Martinez, C.; Wu, Y. C.; Weinstein, A. B.; Stahl, S. S.; Liu, G. S.; Muniz, K. J. Org. Chem. 2013, 78, 6309.  doi: 10.1021/jo400671q

    86. [86]

      Hata, K.; He, Z. H.; Daniliuc, C. G.; Itami, K.; Studer, A. Chem. Commun. 2014, 50, 463.  doi: 10.1039/C3CC47350C

    87. [87]

      Ramella, V.; He, Z. H.; Daniliuc, C. G.; Studer, A. Org. Lett. 2015, 17, 664.  doi: 10.1021/ol503689r

    88. [88]

      Yu, F.; Chen, P. H.; Liu, G. S. Chem. Commun. 2016, 52, 11100.  doi: 10.1039/C6CC06356J

    89. [89]

      Zheng, J. H.; Chen, P.; Yuan, Y. F.; Cheng, J. J. J. Org. Chem. 2017, 82, 5790.  doi: 10.1021/acs.joc.7b00598

    90. [90]

      Karnakanti, S.; Zang, Z. L.; Zhao, S.; Shao, P. L.; Hu, P.; He, Y. Chem. Commun. 2017, 53, 11205.  doi: 10.1039/C7CC06448A

    91. [91]

      Qi, X. X.; Chen, C. H.; Hou, Ch. Q.; Fu, L.; Chen, P. H.; Liu, G. S. J. Am. Chem. Soc. 2018, 140, 7415.  doi: 10.1021/jacs.8b03767

    92. [92]

    93. [93]

      Lin, J. S.; Yu, P.; Huang, L.; Zhang, P.; Tan, B.; Liu, X. Y. Angew. Chem., Int. Ed. 2015, 54, 7847.  doi: 10.1002/anie.201501762

    94. [94]

      Yang, N. Y.; Li, Z. L.; Ye, L.; Tan, B.; Liu, X. Y. Chem. Commun. 2016, 52, 9052.  doi: 10.1039/C6CC00364H

    95. [95]

      Tsuji, N.; Kennemur, J. L.; Buyck, T.; Lee, S.; Prevost, S.; Kaib, P. S. J.; Bykov, D.; Fares, C.; List, B. Science 2018, 359, 1501.  doi: 10.1126/science.aaq0445

    96. [96]

      Lu, Q. Q.; Zhang, J.; Wei, F. L.; Qi, Y.; Wang, H. M.; Liu, Z. L.; Lei, A. W. Angew. Chem., Int. Ed. 2013, 52, 7156.  doi: 10.1002/anie.201301634

    97. [97]

      Chen, H.; Kaga, A.; Chiba, S. Org. Lett. 2014, 16, 6136.  doi: 10.1021/ol503000c

    98. [98]

      Hong, K. B; Johnston, J. N. Org. Lett. 2014, 16, 3804.  doi: 10.1021/ol501693j

    99. [99]

      Danneman, M. W.; Hong, K. B.; Johnston, J. N. Org. Lett. 2015, 17, 2558.  doi: 10.1021/acs.orglett.5b01177

    100. [100]

      Xia, X. F.; Gu, Z.; Liu, W. T.; Wang, H. J.; Xia, Y. M.; Gao, H. Y.; Liu, X.; Liang, Y. M. J. Org. Chem. 2015, 80, 290.  doi: 10.1021/jo502327r

    101. [101]

      Fei, J.; Wang, Z.; Cai, Z. R.; Sun, H.; Cheng, X. Adv. Synth. Catal. 2015, 357, 4063.  doi: 10.1002/adsc.201500646

    102. [102]

      Zhou, S. F.; Pan, X. Q.; Zhou, Z. H.; Shoberu, A.; Zou, J. P. J. Org. Chem. 2015, 80, 3682.  doi: 10.1021/acs.joc.5b00123

    103. [103]

      Huang, L.; Zheng, S. C.; Tan, B.; Liu, X. Y. Org. Lett. 2015, 17, 1589.  doi: 10.1021/acs.orglett.5b00479

    104. [104]

      Chumnanvej, N.; Katrun, P.; Pohmakotr, M.; Reutrakul, V.; Soorukram, D.; Kuhakarn, C. Chin. J. Chem. 2016, 34, 830.  doi: 10.1002/cjoc.v34.8

    105. [105]

      Zhang, Z. X.; Martinez, H.; Dolbier. W. R. J. Org. Chem. 2017, 82, 2589.  doi: 10.1016/j.jfluchem.2011.05.001

    106. [106]

      Zhou, S. F.; Song, T.; Chen, H.; Liu, Z. L.; Shen, H. G.; Li, C. Z. Org. Lett. 2017, 19, 698.  doi: 10.1021/acs.orglett.6b03870

    107. [107]

      Muñiz, K.; Barreiro, L.; Romero, R. M.; Martínez, C. J. Am. Chem. Soc. 2017, 139, 4354.  doi: 10.1021/jacs.7b01443

  • 加载中
    1. [1]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    2. [2]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    3. [3]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    4. [4]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    5. [5]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    6. [6]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    7. [7]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    8. [8]

      Xunzhang Fan Yuanjin Zhao Shufang Luo Aihua He . Karl Ziegler: A Pioneer in the Polyolefin Industry – Commemorating the 50th Anniversary of the German Chemist’s Passing. University Chemistry, 2024, 39(8): 389-394. doi: 10.3866/PKU.DXHX202312065

    9. [9]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    10. [10]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    11. [11]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    12. [12]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    13. [13]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    14. [14]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    15. [15]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    16. [16]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    17. [17]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    18. [18]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    19. [19]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    20. [20]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

Metrics
  • PDF Downloads(425)
  • Abstract views(9034)
  • HTML views(3103)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return