Citation: Zhang Faguang, Peng Xing, Ma Jun'an. Recent Advances in the Synthesis of CF3-Substituted Triazoles and Tetrazoles[J]. Chinese Journal of Organic Chemistry, ;2019, 39(1): 109-116. doi: 10.6023/cjoc201808007 shu

Recent Advances in the Synthesis of CF3-Substituted Triazoles and Tetrazoles

  • Corresponding author: Zhang Faguang, zhangfg1987@tju.edu.cn Ma Jun'an, majun_an68@tju.edu.cn
  • Received Date: 7 August 2018
    Revised Date: 14 September 2018
    Available Online: 12 January 2018

    Fund Project: the National Natural Science Foundation of China 21772142the National Natural Science Foundation of China 21532008the National Basic Research Program of China 973 Program, No. 2014CB745100Project supported by the National Natural Science Foundation of China (Nos. 21472137, 21532008, 21772142) and the National Basic Research Program of China (973 Program, No. 2014CB745100)the National Natural Science Foundation of China 21472137

Figures(9)

  • Trifluoromethylated triazoles and tetrazoles have emerged as increasingly important heterocycles in pharmaceuticals, agrochemicals, catalysis, and materials. As a consequence, great attention has been paid to the efficient synthesis of these valuable CF3-containing molecules. Herein, the advances in the past decade towards the synthesis of CF3-substituted triazoles and tetrazoles are summarized. The remarkable progress in the utilization of versatile CF3-functionalized building blocks including CF3-containing alkynes, CF3-containing carbonyl compounds, CF3-containing pyrones and trifluorodiazoethane (CF3CHN2) is demonstrated accordingly.
  • 加载中
    1. [1]

      (a) Herr, R. J. Bioorg. Med. Chem. 2002, 10, 3379.
      (b) Krivopalov, V. P.; Shkurko, O. P. Russ. Chem. Rev. 2005, 74, 339.
      (c) Myznikov, L. V.; Hrabalek, A.; Koldobskii, G. I. Chem. Heterocycl. Compd. 2007, 43, 1.
      (d) Muller, T.; Bäse, S. Angew. Chem., Int. Ed. 2011, 50, 11844.
      (e) Chattopadhyay, B.; Gevorgyan, V. Angew. Chem., Int. Ed. 2012, 51, 862.
      (f) Gulevich, A. V.; Dudnik, A. S.; Chernyak, N.; Gevorgyan, V. Chem. Rev. 2013, 113, 3084.
      (g) Thirumurugan, P.; Matosiuk, D.; Jozwiak, K. Chem. Rev. 2013, 113, 4905.

    2. [2]

    3. [3]

      (a) Rosa, M. D. L.; Kim, H. W.; Gunic, E.; Jenket, C.; Boyle, U.; Koh, Y.; Korboukh, I.; Allan, M.; Zhang, W.; Chen, H.; Xu, W.; Nilar, S.; Yao, N.; Hamatake, R.; Lang, S. A.; Hong, Z.; Zhang, Z.; Girardet, J.-L. Bioorg. Med. Chem. Lett. 2006, 16, 4444.
      (b) Gakh, A. A.; Kirk, K. L. Fluorinated Heterocycles, ACS Symposium Series, American Chemical Society, Washington, DC, 2009.
      (c) Petrov, V. A. Fluorinated Heterocyclic Compounds: Synthesis, Chemistry, and Applications, John Wiley & Sons, Hoboken, NJ, 2009.
      (d) Kanishchev, O. S.; Gudz, G. P.; Shermolovich, Y. G.; Nesterova, N. V.; Zagorodnya, S. D.; Golovan, A. V. Nucleosides Nucleotides Nucleic Acids 2011, 30, 768.
      (e) Sugane, T.; Tobe, T.; Hamaguchi, W.; Shimada, I.; Maeno, K.; Miyata, J.; Suzuki, T.; Kohara, A.; Kimizuka, T.; Morita, T.; Doihara, H.; Saita, K.; Aota, M.; Furutani, M.; Shimada, Y.; Hamada, N.; Sakamoto, S.; Tsukamoto, S. J. Med. Chem. 2011, 54, 387.
      (f) Gakh, A. A.; Shermolovich, Y. Curr. Top. Med. Chem. 2014, 14, 952.

    4. [4]

      (a) Huisgen, R. 1, 3-Dipolar Cycloaddition Chemistry, Wiley, New York, 1984, pp. 1~176.
      (b) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem., Int. Ed. 2002, 41, 2596.
      (c) Meldal, M.; Tornoe, C. W. Chem. Rev. 2008, 108, 2952.
      (d) Boren, B. C.; Narayan, S.; Rasmussen, L. K.; Zhang, L.; Zhao, H.; Lin, Z.; Jia, G.; Fokin, V. V. J. Am. Chem. Soc. 2008, 130, 8923.
      (e) Spiteri, C.; Moses, J. E. Angew. Chem., Int. Ed. 2010, 49, 31.
      (f) Hein, J. E.; Fokin, V. V. Chem. Soc. Rev. 2010, 39, 1302.

    5. [5]

      (a) Carpenter, W.; Haymaker, A.; Moore, D. W. J. Org. Chem. 1966, 31, 789.
      (b) Meazza, G.; Zanardi, G. J. Fluorine Chem. 1991, 55, 199.

    6. [6]

      (a) Zhang, C.-T.; Zhang, X.; Qing, F.-L. Tetrahedron Lett. 2008, 49, 3927.
      (b) Hager, C.; Miethchen, R.; Reinke, H. J. Fluorine Chem. 2000, 104, 135.
      (c) Xiong, Z.; Qiu, X.-L.; Huang, Y.; Qing, F.-L. J. Fluorine Chem. 2011, 132, 166.
      (d) Granqvist, L.; Virta, P. J. Org. Chem. 2015, 80, 7961.

    7. [7]

      Wei, J.; Chen, J.; Xu, J.; Cao, L.; Deng, H.; Sheng, W.; Zhang, H.; Cao, W. J. Fluorine Chem. 2012, 133, 146.  doi: 10.1016/j.jfluchem.2011.09.009

    8. [8]

      Funabiki, K.; Noma, N.; Kuzuya, G.; Matsui, M.; Shibata, K. J. Chem. Res. 1999, 300.

    9. [9]

      Sibgatulin, D. A.; Bezdudny, A. V.; Mykhailiuk, P. K.; Voievoda, N. M.; Kondratov, I. S.; Volochnyuk, D. M.; Tolmachev, A. A. Synthesis 2010, 1075.

    10. [10]

      Roberts, L. R.; Bradley, P. A.; Bunnage, M. E.; England, K. S.; Fairman, D.; Fobian, Y. M.; Fox, D. N. A.; Gymer, G. E.; Heasley, S. E.; Molette, J.; Smith, G. L.; Schmidt, M. A.; Tones, M. A. A.; Dack, K. N. Bioorg. Med. Chem. Lett. 2011, 21, 6515.  doi: 10.1016/j.bmcl.2011.08.071

    11. [11]

      Chen, M.; Wang, X.-F.; Wang, S.-S.; Feng, Y.-X.; Chen, F.; Yang, C.-L. J. Fluorine Chem. 2012, 135, 323.  doi: 10.1016/j.jfluchem.2011.12.015

    12. [12]

      Peng, W.; Zhu, S. Tetrahedron 2003, 59, 4395.  doi: 10.1016/S0040-4020(03)00621-5

    13. [13]

      (a) Danence, L. J. T.; Gao, Y.; Li, M.; Huang, Y.; Wang, J. Chem.- Eur. J. 2011, 17, 3584.
      (b) Rozin, Y. A.; Leban, J.; Dehaen, W.; Nenajdenko, V. G.; Muzalevskiy, V. M.; Eltsov, O. S.; Bakulev, V. A. Tetrahedron 2012, 68, 614.
      (c) Bonacorso, H. G.; Moraes, M. C.; Wiethan, C. W.; Luz, F. M.; Meyer, A. R.; Zanatta, N.; Martins, M. A. P. J. Fluorine Chem. 2013, 156, 112.
      (d) Pokhodylo, N. T.; Shyyka, O. Y.; Matiychuk, V. S.; Obushak, M. D.; Pavlyuk, V. V. ChemistrySelect 2017, 2, 5871.

    14. [14]

      (a) Zhang, J.; Jin, G.; Xiao, S.; Wu, J.; Cao, S. Tetrahedron 2013, 69, 2352.
      (b) Raeppel, S. L.; Raeppel, F.; Therrien, E. Bioorg. Med. Chem. Lett. 2015, 25, 2527.

    15. [15]

      (a) Goel, A.; Ram, V. J. Tetrahedron 2009, 65, 7865.
      (b) Usachev, B. I. J. Fluorine Chem. 2015, 175, 36.
      (c) Pratap, R.; Ram, V. J. Tetrahedron 2017, 73, 2529.

    16. [16]

      (a) Usachev, B. I.; Usachev, S. A.; Röschenthaler, G.-V.; Sosnovskikh, V. Y. Tetrahedron Lett. 2011, 52, 6723.
      (b) Usachev, S. A.; Usachev, B. I.; Eltsov, O. S.; Sosnovskikh, V. Y. Tetrahedron 2014, 70, 8863.
      (c) Sosnovskikh, V. Y.; Usachev, B. I. Mendeleev Commun. 2002, 12, 75.

    17. [17]

      Wang, S.; Yang, L.-J.; Zeng, J.-L.; Zheng, Y.; Ma, J.-A. Org. Chem. Front. 2015, 2, 1468.  doi: 10.1039/C5QO00219B

    18. [18]

      (a) Fu, D.; Zhang, J.; Cao, S. J. Fluorine Chem. 2013, 156, 170.
      (b) Wei, F.; Zhou, T.; Ma, Y.; Tung, C.-H.; Xu, Z. Org. Lett. 2017, 19, 2098.
      (c) Cheung, K. P. S.; Tsui, G. C. Org. Lett. 2017, 19, 2881.

    19. [19]

      (a) Finnegan, W. G.; Henry, R. A.; Lofquist, R. J. Am. Chem. Soc. 1958, 80, 3908.
      (b) Holland, G. F.; Pereira, J. N. J. Med. Chem. 1967, 10, 149.
      (c) Roh, J.; Vávrová, K.; Hrabálek, A. Eur. J. Org. Chem. 2012, 6101.

    20. [20]

      (a) Norris, W. P. J. Org. Chem. 1962, 27, 3248.
      (b) Rigby W.; Bailey P. M.; McCleverty J. A.; Maitlis P. M. J. Chem. Soc., Dalton Trans. 1979, 367.

    21. [21]

      (a) Uneyama, K. J. Fluorine Chem. 1999, 97, 11.
      (b) Xiao, J.; Zhang, X.; Wang, D.; Yuan, C. J. Fluorine Chem. 1999, 99, 83.

    22. [22]

      (a) Armour, D. R.; Chung, K. M. L.; Congreve, M.; Evans, B.; Guntrip, S.; Hubbard, T.; Kay, C.; Middlemiss, D.; Mordaunt, J. E.; Pegg, N. A.; Vinader, M. V.; Ward, P.; Watson, S. P. Bioorg. Med. Chem. Lett. 1996, 6, 1015.
      (b) Hale, J. J.; Mills, S. G.; MacCoss, M.; Finke, P. E.; Cascieri, M. A.; Sadowski, S.; Ber, E.; Chicchi, G. G.; Kurtz, M.; Metzger, J.; Eiermann, G.; Tsou, N. N.; Tattersall, F. D.; Rupniak, N. M. J.; Williams, A. R.; Rycroft, W.; Hargreaves, R.; MacIntyre, D. E. J. Med. Chem. 1998, 41, 4607.

    23. [23]

      Chen, Z.; Fan, S.-Q.; Zheng, Y.; Ma, J.-A. Chem. Commun. 2015, 51, 16545.  doi: 10.1039/C5CC07324C

    24. [24]

      (a) Lebsack, A. D.; Gunzner, J.; Wang, B.; Pracitto, R.; Schaffhauser, H.; Santini, A.; Aiyar, J.; Bezverkov, R.; Munoz, B.; Liu, W.; Venkatraman, S. Bioorg. Med. Chem. Lett. 2004, 14, 2463.
      (b) Desai, A. A. Angew. Chem., Int. Ed. 2011, 50, 1974.
      (c) Aiguadé, J.; Balagué, C.; Carranco, I.; Caturla, F.; Domínguez, M.; Eastwood, P.; Esteve, C.; González, J.; Lumeras, W.; Orellana, A.; Preciado, S.; Roca, R.; Vidal, L.; Vidal, B. Bioorg. Med. Chem. Lett. 2012, 22, 3431.

  • 加载中
    1. [1]

      Zhanhui Yang Jiaxi Xu . (m+n+…) or [m+n+…]cycloaddition?. University Chemistry, 2025, 40(3): 387-389. doi: 10.12461/PKU.DXHX202406032

    2. [2]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    3. [3]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    4. [4]

      Shahua Huang Xiaoming Guo Lin Lin Guangping Chang Sheng Han Zuxin Zhou . Application of “Integration of Industry and Education” in Engineering Chemistry: Improvement of the Pesticide Fipronil Production. University Chemistry, 2024, 39(3): 199-204. doi: 10.3866/PKU.DXHX202309064

    5. [5]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    6. [6]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    7. [7]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    8. [8]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    9. [9]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    10. [10]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    11. [11]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    12. [12]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    13. [13]

      Xiaofeng Xia Jielian Zhu . Innovative Comprehensive Experimental Design: Synthesis of 6-Fluoro-N-benzoyl Tetrahydroquinoline. University Chemistry, 2024, 39(10): 344-352. doi: 10.12461/PKU.DXHX202405063

    14. [14]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    15. [15]

      Yingying Chen Di Xu Congmin Wang . Exploration and Practice of the “Four-Level, Three-Linkage” General Chemistry Course System. University Chemistry, 2024, 39(8): 119-125. doi: 10.3866/PKU.DXHX202401057

    16. [16]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    17. [17]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    18. [18]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    19. [19]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    20. [20]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

Metrics
  • PDF Downloads(30)
  • Abstract views(2159)
  • HTML views(519)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return