Citation: Tang Zilong, Wang Ming, Yao Yuan, Tan Jingzhao, Dai Ningning, Li Xinxing, Peng Lifen, Jiao Yinchun. Chemoselective Synthesis of Substituted Benzoxazines and Imidazolidines by Reactions of Hydroxyl Substituted Ethylenediamine Derivatives with Aldehydes[J]. Chinese Journal of Organic Chemistry, ;2019, 39(3): 800-810. doi: 10.6023/cjoc201808003 shu

Chemoselective Synthesis of Substituted Benzoxazines and Imidazolidines by Reactions of Hydroxyl Substituted Ethylenediamine Derivatives with Aldehydes

  • Corresponding author: Tang Zilong, zltang67@aliyun.com
  • Received Date: 6 August 2018
    Revised Date: 10 September 2018
    Available Online: 26 March 2018

    Fund Project: the National Natural Science Foundation of China 21372070the Scientific Research Fund of Hunan Provincial Education Department 17A066the National Natural Science Foundation of China 21877034Project supported by the National Natural Science Foundation of China (Nos. 21877034, 21372070) and the Scientific Research Fund of Hunan Provincial Education Department (No. 17A066)

Figures(4)

  • Lewis acid La(OTf) 3-catalyzed chemoselective cyclization of hydroxyl substituted ethylenediamine derivatives with aldehydes has been described for the first time, which provides efficient access to diversely functionalized 1, 3-imidazoli-dines and 3, 1-benzoxazines in generally good yields only by adjusting the position of the methylene group within hydroxyl substituted ethylenediamines. The reaction is suitable to aromatic aldehydes and aliphatic ones. Plausible mechanisms are also proposed to explain the observed reaction modes, wherein the nucleophilicity of nitrogen and oxygen atoms plays an important role in controlling the chemoselectivity.
  • 加载中
    1. [1]

      Neuvonen, K.; Pihlaja, K. J. Chem. Soc., Perkin Trans 2 1988, 461.
       

    2. [2]

      Tang, Z.; Chen, W.; Zhu, Z.; Liu, H. J. Heterocycl. Chem. 2011, 48, 255.  doi: 10.1002/jhet.533

    3. [3]

      Mangion, K.; Chen, C.; Li, H.; Maligres, P.; Chen, Y.; Christensen, M.; Cohen, R.; Jeon, I.; Klapars, A.; Krska, S.; Nguyen, H.; Reamer, R. A.; Sherry, B. D.; Zavialov, I. Org. Lett. 2014, 16, 2310.  doi: 10.1021/ol500971c

    4. [4]

      Tang, Z.; Chen, W.; Zhu, Z.; Liu, H. Synth. Commun. 2012, 42, 1372.  doi: 10.1080/00397911.2010.540691

    5. [5]

      Mathew, B. P.; Nath, M. J. Heterocycl. Chem. 2009, 46, 1003.  doi: 10.1002/jhet.v46:5

    6. [6]

      Colin, J. L.; Loubinoux, B. Tetrahedron Lett. 1982, 23, 4245.  doi: 10.1016/S0040-4039(00)88715-8

    7. [7]

      Richers, M. T.; Breugst, M.; Platonova, A. Y.; Ullrich, A.; Dieckmann, A.; Houk, K. N.; Seidel, D. J. Am. Chem. Soc. 2014, 136, 6123.  doi: 10.1021/ja501988b

    8. [8]

      Xu, F.; Qian, X.-Y.; Li, Y.-J.; Xu, H.-C. Org. Lett. 2017, 19, 6332.  doi: 10.1021/acs.orglett.7b03152

    9. [9]

      Chen, X.; Hao, W.; Liu, Y. Org. Biomol. Chem. 2017, 15, 3423.  doi: 10.1039/C7OB00625J

    10. [10]

      Garg, V.; Kumar, A.; Chaudhary, A.; Agrawal, S.; Tomar, P.; Sreenivasan, K. K. Med. Chem. Res. 2013; 22, 5256.  doi: 10.1007/s00044-013-0534-3

    11. [11]

      Chen, Y.; Cass, S. L.; Kutty, S. K.; Yee, E. M. H.; Chan, D. S. H.; Gardner, C. R.; Vittorio, O.; Pasquier, E.; Black, D. S.; Kumar, N.; Bioorg. Med. Chem. Lett. 2015, 25, 5377.  doi: 10.1016/j.bmcl.2015.09.027

    12. [12]

      Morrison, R.; Al-Rawi, J. M. A.; Jennings, I.; Thompson, P. E. Eur. J. Med. Chem. 2016, 110, 326.  doi: 10.1016/j.ejmech.2016.01.042

    13. [13]

      Ihmaid, S. K.; Ai-Rawi, J. M. A.; Bradley, C. J.; Angove, M. J.; Robertson, M. N. Eur. J. Med. Chem. 2012, 57, 85.  doi: 10.1016/j.ejmech.2012.08.035

    14. [14]

      Nemecek. P.; Mocak, J.; Lehotay, J.; Waisser, K. Chem. Papers 2013, 67, 305.
       

    15. [15]

      Pastemak, A.; Goble, S. D.; Struters, M.; Vicario, P. P.; Ayala, J. M.; Salvo, J. D.; Kilbum, R.; Wisniewski, T.; Demartino, J. A.; Mills, S. G.; Yang, L. ACS Med. Chem. Lett. 2010, 1, 14.  doi: 10.1021/ml900009d

    16. [16]

      Tong, L.; Yu, W.; Chen, L.; Selyutin, O.; Dwyer, M. P.; Nair, A. G.; Mazzola, R.; Kim, J.; Sha, D.; Yin, J.; Ruck, R. T.; Davies, I. W.; Hu, B.; Zhong B.; Hao, J.; Ji, T.; Zan, S.; Liu, R.; Agrawal, S.; Xia, E.; Curry, S.; McMonagle, P.; Bystol, K.; Lahser, F.; Carr, D.; Rokosz, L.; Ingravallo, P.; Chen, S.; Feng, K.; Cartwright, M.; Asante-Appiah, E.; Kozlowski, J. A. J. Med. Chem. 2017, 60, 290.  doi: 10.1021/acs.jmedchem.6b01310

    17. [17]

      Ihmaid, S.; Ahmed, H. E. A.; Ali, A. A.; Sherif, Y. E.; Tarazi, H. M.; Riyadh, S. M.; Zayed, M. F.; Abulkhair, H. S.; Rateb, H. S. Bioorg. Chem. 2017, 72, 234.  doi: 10.1016/j.bioorg.2017.04.014

    18. [18]

      Sharma, V.; Amarnath, N.; Shukla, S.; Ayana, R.; Kumar, N.; Yadav, N.; Kannan, D.; Sehrawat, S.; Pati, S.; Lochab, B.; Singh, S.; Bioorg. Med. Chem. Lett. 2018, 28, 1629.  doi: 10.1016/j.bmcl.2018.03.047

    19. [19]

      Zhang, P.; Terefenko, E. A.; Fensome, A.; Zhang, Z.; Zhu, Y.; Cohen, J.; Winneker, R.; Wrobel, J.; Yardley, J. Bioorg. Med. Chem. Lett. 2002, 12, 787.  doi: 10.1016/S0960-894X(02)00025-2

    20. [20]

      Nguyen, T. T.; Amey, R. L.; Martin, J. C. J. Org. Chem. 1982, 47, 1024.  doi: 10.1021/jo00345a026

    21. [21]

      Kobzina, J. W.; Creek, W. US 4030906, 1977.

    22. [22]

      Sugiyama, H.; Hosoda, K.; Kumagai, Y.; Takeuchi, M.; Okada, M. U. US 4596801, 1986.

    23. [23]

      Charmantray, F.; Demeunynck, M.; Carrez, D.; Croisy, A.; Lansiaux, A.; Bailly, C.; Colson, P. J. Med. Chem. 2003, 46, 967.  doi: 10.1021/jm020389w

    24. [24]

      Badolato, M.; Carullo, G.; Armentano, B.; Panza, S.; Malivindi, R. Bioorg. Med. Chem. Lett. 2017, 27, 3092.  doi: 10.1016/j.bmcl.2017.05.046

    25. [25]

      Dias, N.; Goossens, J.; Baldeyrou, B.; Lansiaux, A.; Colson, P.; Di Salvo, A.; Bernal, J.; Turnbull, A.; Mincher, D. J.; Bailly, C. Bioconjugate Chem. 2005, 16, 949.  doi: 10.1021/bc050065x

    26. [26]

      Marasini, B. P.; Rahim, F.; Perveen, S.; Karim, A.; Khan, K. M.; Rahman, A.; Choudhary, M. L. Bioorg. Chem. 2017, 70, 210.  doi: 10.1016/j.bioorg.2017.01.001

    27. [27]

      Braga, A. L.; Vargas, F.; Silveira, C. C.; de Andrade, L. H. Tetrahedron Lett. 2002, 43, 2335.  doi: 10.1016/S0040-4039(02)00300-3

    28. [28]

      Lee, E.; Kim, S.; Jung, B.; Ahn, W.; Kim, G. Tetrahedron Lett. 2003, 44, 1971.  doi: 10.1016/S0040-4039(03)00069-8

    29. [29]

      Arai, T.; Mishiro, A.; Yokoyama, N.; Suzuki, K.; Sato, H. J. Am. Chem. Soc. 2010, 132, 5338.  doi: 10.1021/ja100265j

    30. [30]

      Wang, Y.; Zhang, H.; Li, C.; Fan, T.; Shi, F. Chem. Commun. 2016, 52, 1804.  doi: 10.1039/C5CC07924A

    31. [31]

      Matosiuk, D.; Fidecka, S.; Antkiewicz-Michaluk, L.; Dybala, I.; Koziol, A. E. Eur. J. Med. Chem. 2001, 36, 783.  doi: 10.1016/S0223-5234(01)01267-3

    32. [32]

      Byrtus, H.; Obniska, J.; Czopek, A.; Kaminski, K.; Pawlowski, M. Bioorg. Med. Chem. 2011, 19, 6149.  doi: 10.1016/j.bmc.2011.08.017

    33. [33]

      Kim, M.; Kim, H.; Kim, H.; Chin, J. J. Org. Chem. 2017, 82, 12050.  doi: 10.1021/acs.joc.7b01751

    34. [34]

      Chen, J. R.; Hu, X. Q.; Lu, L. Q.; Xiao, W. J. Chem. Rev. 2015, 115, 5301.  doi: 10.1021/cr5006974

    35. [35]

      Chen, D. Z.; Xiao, W. J.; Chen, J. R. Org. Chem. Front. 2017, 4, 1289.  doi: 10.1039/C7QO00163K

    36. [36]

      Tang, Z.; Tan, J.; Cai, L.; Li, X.; Liu, W. Chin. J. Appl. Chem. 2017, 34, 345.
       

    37. [37]

      CCDC 1823294 for compound 5ba, see the Supporting Information for detail.

    38. [38]

      Tang, Z.; Wang, L.; Tan, J.; Yao, Y.; Peng, L. Chin. J. Appl. Chem. 2018 35, 1190.

  • 加载中
    1. [1]

      Liping GUO . Synthesis and crystal structure characterization of yttrium imido complex: The reactivity of 2-substituted-1-amino-o-carborane with yttrium dialkyl complex. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1409-1415. doi: 10.11862/CJIC.20250065

    2. [2]

      Zhaodong WANGIn situ synthesis, crystal structure, and magnetic characterization of a trinuclear copper complex based on a multi-substituted imidazo[1,5-a]pyrazine scaffold. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 597-604. doi: 10.11862/CJIC.20240268

    3. [3]

      Kun WangTianxue GongYaohuang HuangBoyang HanHanxiao YangPavlo O. DralWeiwei Fang . Bornylimidazo[1,5–a]pyridin-3-ylidene allylic Pd catalyst with optimal electronic and steric properties for synthesis of 3,3′-disubstituted oxindoles. Chinese Chemical Letters, 2025, 36(7): 110539-. doi: 10.1016/j.cclet.2024.110539

    4. [4]

      Rong-Nan YiWei-Min He . Photocatalytic Minisci-type multicomponent reaction for the synthesis of 1-(halo)alkyl-3-heteroaryl bicyclo[1.1.1]pentanes. Chinese Chemical Letters, 2024, 35(10): 110115-. doi: 10.1016/j.cclet.2024.110115

    5. [5]

      Ao SunZipeng LiShuchun LiXiangbao MengZhongtang LiZhongjun Li . Stereoselective synthesis of α-3-deoxy-D-manno-oct-2-ulosonic acid (α-Kdo) derivatives using a C3-p-tolylthio-substituted Kdo fluoride donor. Chinese Chemical Letters, 2025, 36(3): 109972-. doi: 10.1016/j.cclet.2024.109972

    6. [6]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    7. [7]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    8. [8]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    9. [9]

      Lifang HEWenjie TANGYaoze LUOMingsheng LIANGJianxin TANGYuxuan WUFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012

    10. [10]

      Lixing ZHANGYaowen WANGXu HANJunhong ZHOUJinghui WANGLiping LIGuangshe LI . Research progress in the synthesis of fluorine-containing perovskites and their derivatives. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1689-1701. doi: 10.11862/CJIC.20250007

    11. [11]

      Wujun JianMong-Feng ChiouYajun LiHongli BaoSong Yang . Cu-catalyzed regioselective diborylation of 1,3-enynes for the efficient synthesis of 1,4-diborylated allenes. Chinese Chemical Letters, 2024, 35(5): 108980-. doi: 10.1016/j.cclet.2023.108980

    12. [12]

      Weizhong LINGJingyi LINJianglin ZHUYuyi LIANGShanshan DAIYu LI . Syntheses, structures, and catalytic performances of complexes with 4,4′-dihydroxy-[1,1′-biphenyl]-3,3′-dicarboxylic acid ligands. Chinese Journal of Inorganic Chemistry, 2026, 42(1): 152-160. doi: 10.11862/CJIC.20250204

    13. [13]

      Zhiwei ChenHeyun ShengXue LiMenghan ChenXin LiQiuling Song . Efficient capture of difluorocarbene by pyridinium 1,4-zwitterionic thiolates: A concise synthesis of difluoromethylene-containing 1,4-thiazine derivatives. Chinese Chemical Letters, 2024, 35(4): 108937-. doi: 10.1016/j.cclet.2023.108937

    14. [14]

      Qi LiZi-Lu WangYun-He Xu . Copper-catalyzed 1,4-silylcyanation of 1,3-enynes: A silyl radical-initiated approach for synthesis of difunctionalized allenes. Chinese Chemical Letters, 2025, 36(3): 109991-. doi: 10.1016/j.cclet.2024.109991

    15. [15]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    16. [16]

      Yueying YangHuiru XieXinbo YuYang LiuHui WangHua LiLixia Chen . Design, synthesis and evaluation of the first DYRK1A degrader for promoting the proliferation of pancreatic β-cells. Chinese Chemical Letters, 2024, 35(11): 109570-. doi: 10.1016/j.cclet.2024.109570

    17. [17]

      Yongli ZhaoDingsheng CaoJie-Ping WanYunyun Liu . Synthesis of 3-phosphinyl chromones via in situ iodination mediated C-H phosphination and the tunable synthesis of 2-phosphoryl chromanones. Chinese Chemical Letters, 2026, 37(1): 111740-. doi: 10.1016/j.cclet.2025.111740

    18. [18]

      Yanfen PENGXinyue WANGTianbao LIUXiaoshuo WUYujing WEI . Syntheses and luminescence of four Cd(Ⅱ)/Zn(Ⅱ) complexes constructed by 1,3‐bis(4H‐1,2,4‐triazole)benzene. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1416-1426. doi: 10.11862/CJIC.20250018

    19. [19]

      Shiqi XuZi YeShuang ShangFengge WangHuan ZhangLianguo ChenHao LinChen ChenFang HuaChong-Jing Zhang . Pairs of thiol-substituted 1,2,4-triazole-based isomeric covalent inhibitors with tunable reactivity and selectivity. Chinese Chemical Letters, 2024, 35(7): 109034-. doi: 10.1016/j.cclet.2023.109034

    20. [20]

      Bairu MengZongji ZhuoHan YuSining TaoZixuan ChenErik De ClercqChristophe PannecouqueDongwei KangPeng ZhanXinyong Liu . Design, synthesis, and biological evaluation of benzo[4,5]thieno[2,3-d]pyrimidine derivatives as novel HIV-1 NNRTIs. Chinese Chemical Letters, 2024, 35(6): 108827-. doi: 10.1016/j.cclet.2023.108827

Metrics
  • PDF Downloads(8)
  • Abstract views(1691)
  • HTML views(119)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return