Citation: Liao Xu, Jiang Yan, Lai Shilin, Liu Yuangang, Wang Shibin, Xiong Xingquan. Chemoenzymatic Relay Reaction and Its Applications in Highly Efficient and Green Synthesis of High-Value Chiral Compounds[J]. Chinese Journal of Organic Chemistry, ;2019, 39(3): 668-678. doi: 10.6023/cjoc201807038 shu

Chemoenzymatic Relay Reaction and Its Applications in Highly Efficient and Green Synthesis of High-Value Chiral Compounds

  • Corresponding author: Xiong Xingquan, xxqluli@hqu.edu.cn
  • Received Date: 23 July 2018
    Revised Date: 25 September 2018
    Available Online: 26 March 2018

    Fund Project: the Natural Science Foundation of Fujian Province 2016J01063the Program for New Century Excellent Talents in Fujian Province 2012FJ-NCET-ZR03Project supported by the National Natural Science Foundation of China (No. 21004024), the Natural Science Foundation of Fujian Province (No. 2016J01063), the Program for New Century Excellent Talents in Fujian Province (No. 2012FJ-NCET-ZR03), the University Distinguished Young Research Talent Training Program of Fujian Province (No. 11FJPY02) and the Subsidized Project for Postgraduates' Innovative Fund in Scientific Research of Huaqiao University (No. ZQN-YX103)the National Natural Science Foundation of China 21004024the Subsidized Project for Postgraduates' Innovative Fund in Scientific Research of Huaqiao University ZQN-YX103the University Distinguished Young Research Talent Training Program of Fujian Province 11FJPY02

Figures(23)

  • Compared with traditional chemical catalysis or enzymatic synthesis, chemoenzymatic relay reaction is a simpler, more efficient and economical method. It not only has the advantages of high efficiency and selectivity of enzyme catalysis, but also has the advantages of low price of synthetic raw materials, simple and high efficiency of synthetic process, green and friendly production environment, and excellent optical purity of the obtained product. Thus, chemoenzymatic relay synthesis methods have been widely used in the synthesis of high-value chiral compounds. In recent years, chemists have been committed to making chemoenzymatic catalytic conditions easier by changing catalysts and designing more reasonable ways, which could be used in more fields. In this review, the recent progress in the synthesis of chiral alcohols, epoxides, heterocyclics and other chiral compounds by using chemoenzymatic relay synthesis, such as enzyme and metal catalysis, enzyme and organic catalysis, enzyme and new reaction techniques, is reviewed, and the development trends of this field are also prospected.
  • 加载中
    1. [1]

      Katja, G.; Kirsten, S.; Stephan, L.; Andreas, L. Appl. Microbiol. Biotechnol. 2007, 76, 24.

    2. [2]

      Ni, Y.; Li, C. C.; Ma, H. M.; Zhang, J.; Xu, J. H. Appl. Mierobiol. Biotechnol. 2010, 89, 1111.

    3. [3]

      Patel, R. N. Coord. Chem. Rev. 2008, 252, 659.  doi: 10.1016/j.ccr.2007.10.031

    4. [4]

      Wang, H.; Zong, M. H.; Wu, H. J. Biotechnology 2007, 129, 689.

    5. [5]

      Makkee, M.; Kieboom, A. P. G.; van Bekkum, H. J. Chem. Soc., Chem. Commun. 1980, 930.
       

    6. [6]

      Allen, J. V.; Williams, J. M. J. Tetrahedron Lett. 1996, 37, 1859.  doi: 10.1016/0040-4039(96)00136-0

    7. [7]

      Dinh, P. M.; Howarth, J. A.; Hudnott, A. R.; Williams, J. M. J.; Harris, W. Tetrahedron Lett. 1996, 37, 7623.  doi: 10.1016/0040-4039(96)01677-2

    8. [8]

      Carr, R.; Alexeeva, M.; Dawson, M. J.; Fernandez, V. G.; Humphrey, C. E.; Turner, N. J. ChemBioChem 2005, 6, 637.  doi: 10.1002/cbic.v6:4

    9. [9]

      Bisogno, F. R.; Lopez-Vidal, M. G.; de Gonzalob, G. Adv. Synth. Catal. 2017, 359, 2026.  doi: 10.1002/adsc.v359.12

    10. [10]

      Schrittwieser, J. H.; Velikogne, S.; Hall, M.; Kroutil, W. Chem. Rev. 2018, 118, 270.  doi: 10.1021/acs.chemrev.7b00033

    11. [11]

      Rudroff, F.; Mihovilovic, A. D.; Gröger, H.; Radka, S.; Hans, I.; Uwe, T. B. Nat. Catal. 2018, 1, 12.  doi: 10.1038/s41929-017-0010-4

    12. [12]

      Allen, J. V.; Williams, J. M. J. Tetrahedron Lett. 1996, 37, 1859.  doi: 10.1016/0040-4039(96)00136-0

    13. [13]

      Pamies, O.; Backvall, J. E. Chem. Rev. 2003, 103, 3247.  doi: 10.1021/cr020029g

    14. [14]

      Burda, E.; Hummel, W.; Groger, H. Angew. Chem., Int. Ed. 2008, 47, 9551.  doi: 10.1002/anie.v47:49

    15. [15]

      Sato, H.; Hummel, W.; Groger, H. Angew. Chem., Int. Ed. 2015, 54, 4488.  doi: 10.1002/anie.201409590

    16. [16]

      Ahmed, S. T.; Parmeggiani, F.; Weise, N. J.; Flitsch, S. L.; Turner, N. J. ACS Catal. 2015, 5, 5410.  doi: 10.1021/acscatal.5b01132

    17. [17]

      Latham, J.; Henry, J, M.; Sharif, H, H.; Menon, B. R. K.; Shepherd, S. A.; Greaney, M. F.; Micklefield, J. Nat. Commun. 2016, 7, 11873.  doi: 10.1038/ncomms11873

    18. [18]

      Rodriguez-Alvarez, M. J.; Rios-Lombardia, N.; Schumacher, S.; Perez-Iglesias, D.; Moris, F.; Cadierno, V.; Garcia-Alvarez, J.; Gonzalez-Sabín, J. ACS Catal. 2017, 7, 7753.  doi: 10.1021/acscatal.7b02183

    19. [19]

      Denard, C. A.; Bartlett, M. J.; Wang, Y. J.; Lu, L.; Hartwig, J. F.; Zhao, H.-M. ACS Catal. 2015, 5, 3817.  doi: 10.1021/acscatal.5b00533

    20. [20]

      Denard, C. A.; Huang, H.; Bartlett, M. J.; Lu, L.; Tan, Y.; Zhao, H.-M.; Hartwig, J. F. Angew. Chem., Int. Ed. 2014, 53, 465.  doi: 10.1002/anie.v53.2

    21. [21]

      Rios-Lombardia, N.; Vidal, C.; Cocina, M.; Moris, F.; Garcia-Alvarez, J.; Gonzalez-Sabin, J. Chem. Commun. 2015, 51, 10937.  doi: 10.1039/C5CC03298A

    22. [22]

      Sosa, V.; Melkie, M.; Sulca, C.; Li, J.; Tang, L.; Li, J.; Faris, J.; Foley, B.; Banh, T.; Kato, M.; Cheruzel, L. E. ACS Catal. 2018, 8, 2225.  doi: 10.1021/acscatal.7b04160

    23. [23]

      Haak, R. M.; Berthiol, F.; Jerphagnon, T.; Gayet, A. J. A.; Tarabiono, C.; Postema, C. P.; Ritleng, V.; Pfeffer, M.; Janssen, D. B.; Minnaard, A. J.; Feringa, B. L.; de Vries J. G. J. Am. Chem. Soc. 2008, 130, 135008.
       

    24. [24]

      Mutti, F. G.; Orthaber, A.; Schrittwieser, J. H.; de Vries, J. G.; Pietschnig, R.; Kroutil, W. Chem. Commun. 2010, 46, 8046.  doi: 10.1039/c0cc02813d

    25. [25]

      Wang, Z. J.; Clary, K. N.; Bergman, R. G.; Raymond, K. N.; Toste, F. D. Nat. Chem. 2013, 5, 100.  doi: 10.1038/nchem.1531

    26. [26]

      Fiedler, D.; Bergman, R. G.; Raymond, K. N. Angew. Chem., Int. Ed. 2006, 45, 745.  doi: 10.1002/(ISSN)1521-3773

    27. [27]

      Merlau, M. L.; Mejia, M. D. P.; Nguyen, S. T.; Hupp, J. T. Angew. Chem., Int. Ed. 2001, 40, 4239.  doi: 10.1002/1521-3773(20011119)40:22<>1.0.CO;2-D

    28. [28]

      Oshovsky, G. V.; Reinhoudt, D. N.; Verboom, W. Angew. Chem., Int. Ed. 2007, 46, 2366.  doi: 10.1002/(ISSN)1521-3773

    29. [29]

      Schaaf, P.; Gojic, V.; Bayer, T.; Rudroff, F.; Schnurch, M.; Mihovilovic, M. ChemCatChem 2018, 10, 920.  doi: 10.1002/cctc.201701752

    30. [30]

      Cuetos, A.; Bisogno, F. R.; Lavandera, I.; Gotor, V. Chem. Commun. 2013, 49, 2625.  doi: 10.1039/c3cc38674k

    31. [31]

      Wang, J.-X.; Li, K.; Zhou, X.-J.; Han, W.-Y.; Wan, N.-W.; Cui, B.-D.; Wang, H.-H.; Yuan, W.-C.; Chen, Y.-Z. Tetrahedron Lett. 2017, 58, 2252.  doi: 10.1016/j.tetlet.2017.04.074

    32. [32]

      Baer, K.; Krauber, M.; Burda, E.; Hummel, W.; Berkessel, A.; Grçger, H. Angew. Chem., Int. Ed. 2009, 48, 9355.  doi: 10.1002/anie.v48:49

    33. [33]

      Rulli, G.; Dunangdee, N.; Baer, K.; Hummel, W.; Berkessel, A.; Grçger, H. Angew. Chem., Int. Ed. 2011, 50, 7944.  doi: 10.1002/anie.v50.34

    34. [34]

      Heidlindemann, M.; Rulli, G.; Berkessel, A.; Hummel, W.; Grçger, H. ACS Catal. 2014, 4, 1099.  doi: 10.1021/cs4010387

    35. [35]

      Simon, R. C.; Busto, E.; Schrittwiesser, J. H.; Sattler, J. H.; Pietruszka, S. J.; Faber, K.; Kroutil, W. Chem. Commun. 2014, 50, 15669.  doi: 10.1039/C4CC06230B

    36. [36]

      Akagawa, K.; Kudo, K. Adv. Synth. Catal. 2011, 353, 843.  doi: 10.1002/adsc.v353.6

    37. [37]

      Akagawa, K.; Fujiwara, T.; Sakamoto, S.; Kudo, K. Chem. Commun. 2010, 46, 8040.  doi: 10.1039/c0cc02301a

    38. [38]

      Akagawa, K.; Umezawa, R.; Kudo, K. Beilstein J. Org. Chem. 2012, 8, 1333.  doi: 10.3762/bjoc.8.152

    39. [39]

      Hafenstine, G. R.; Ma, K.; Harris, A. W.; Yehezkeli, O.; Park, E. Domaille, D. W.; Cha, J. N.; Goodwin, A. P. ACS Catal. 2017, 7, 568.  doi: 10.1021/acscatal.6b03213

    40. [40]

      Sujic, S.; Pietruszka, J.; Worgull, D. Adv. Synth. Catal. 2015, 357, 1822.  doi: 10.1002/adsc.201500183

    41. [41]

      Akagawa, K.; Kudo, K. Org. Lett. 2011, 13, 3498.  doi: 10.1021/ol2012956

    42. [42]

      Parmeggiani, F.; Ahmed, S. T.; Weise, N. J.; Turner, N. J. Tetrahedron 2016, 72, 7256.  doi: 10.1016/j.tet.2015.12.063

    43. [43]

      Ahmed, S. T.; Parmeggiani, F.; Weise, N. J.; Flitsch, S. L.; Turner, N. J. Org. Lett. 2016, 18, 5468.  doi: 10.1021/acs.orglett.6b02559

    44. [44]

      Xu, Y.-F.; Wang, M.; Feng, B.; Li, Z.-Y.; Li, Y.-H.; Li, H.-X.; Li, H. Catal. Sci. Technol. 2017, 7, 5838.  doi: 10.1039/C7CY01954H

    45. [45]

      Kotlewska, A. J.; Rantwijk, F. V.; Sheldon, R. A.; Arends, I. W. C. E. Green Chem. 2011, 13, 2154.  doi: 10.1039/c1gc15255f

    46. [46]

      Zhou, P.-F.; Wang, X.-P.; Yang, B.; Hollmannc, F.; Wang, Y.-H. RSC Adv. 2017, 7, 12518.  doi: 10.1039/C7RA00805H

  • 加载中
    1. [1]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    2. [2]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    3. [3]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    4. [4]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    5. [5]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    6. [6]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    7. [7]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    8. [8]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    9. [9]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    10. [10]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    11. [11]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    12. [12]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    13. [13]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    14. [14]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    15. [15]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    16. [16]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    17. [17]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    18. [18]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    19. [19]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    20. [20]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

Metrics
  • PDF Downloads(50)
  • Abstract views(2895)
  • HTML views(666)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return