Citation: Liu Zhanxiong, Yuan Jing, Zhang Zhenfeng, Yan Deyue, Zhang Wanbin. Design, Synthesis and Antitumor Activity of 1-Monosubstituted 1H-Naphtho[2, 3-d]imidazole-4, 9-diones and 1H-Anthra[2, 3-d]imidazole-4, 11-diones[J]. Chinese Journal of Organic Chemistry, ;2018, 38(12): 3302-3317. doi: 10.6023/cjoc201807019 shu

Design, Synthesis and Antitumor Activity of 1-Monosubstituted 1H-Naphtho[2, 3-d]imidazole-4, 9-diones and 1H-Anthra[2, 3-d]imidazole-4, 11-diones

  • Corresponding author: Zhang Zhenfeng, zhenfeng@sjtu.edu.cn Zhang Wanbin, wanbin@sjtu.edu.cn
  • Received Date: 9 July 2018
    Revised Date: 3 August 2018
    Available Online: 14 December 2019

    Fund Project: the National Natural Science Foundation of China 21572131Project supported by the National Key Research and Development Plan (No. 2016YFA0201500) and the National Natural Science Foundation of China (No. 21572131)the National Key Research and Development Plan 2016YFA0201500

Figures(7)

  • In order to further expand the molecular diversity of quinone-fused imidazoles as anticancer agents, a number of 1-monosubstituted 1H-naphtho[2, 3-d]imidazole-4, 9-diones and 1H-anthra[2, 3-d]imidazole-4, 11-diones were designed, synthesized and biologically evaluated. The structure-activity relationships were studied in vitro against three human cancer cell lines (human breast carcinoma cell line MCF-7, human cervical carcinoma cell line Hela and human lung carcinoma cell line A549) and one normal cell line (mouse fibroblast cell line L929). Among them, 1-methyl-1H-anthra[2, 3-d]imidazole-4, 11-dione, which bears a large π-system and a small N-substituent in the imidazole segment, showed good antiproliferative activity against MCF-7 and A549 (IC50 values are 7.4 and 1.6 μmol·L-1, respectively) and almost no cytotoxicity to L929 (IC50 is 150 μmol·L-1).
  • 
    1. [1]

      Terwilliger, D. W.; Trauner, D. J. Am. Chem. Soc. 2018, 140, 2748.  doi: 10.1021/jacs.7b13092

    2. [2]

      Ho, S.-H. S.; Sim, M.-Y.; Yee, W.-L. S.; Yang, T.; Yuen, S.-P. J.; Go, M.-L. Eur. J. Med. Chem. 2015, 104, 42.  doi: 10.1016/j.ejmech.2015.09.026

    3. [3]

      Kim, J. S.; Lee, H.-J.; Suh, M.-E.; Choo, H.-Y. P.; Lee, S. K.; Park, H. J.; Kim, C.; Park. S. W.; Lee, C.-O. Bioorg. Med. Chem. 2004, 12, 3683.
       

    4. [4]

      Kuo, S.-C.; Ibuka, T.; Huang, L.-J.; Lien, J.-C.; Yean, S.-R.; Huang, S.-C.; Lednicer, D.; Morris-Natschke, S.; Lee, K.-H. J. Med. Chem. 1996, 39, 1447.  doi: 10.1021/jm950247k

    5. [5]

      Yoo, H.-W.; Suh, M.-E.; Park, S. W. J. Med. Chem. 1998, 41, 4716.  doi: 10.1021/jm970695n

    6. [6]

      Suh, M.-E.; Kang, M.-J.; Yoo, H.-W.; Park, S.-Y.; Lee, C.-O. Bioorg. Med. Chem. 2000, 8, 2079.
       

    7. [7]

      Liu, Z.; Zhang, Z.; Zhang, W.; Yan, D. Bioorg. Med. Chem. Lett. 2018, 28, 2454.  doi: 10.1016/j.bmcl.2018.06.007

    8. [8]

      Truitt, P.; Hayes, D.; Creagh, L. T. J. Med. Chem. 1964, 7, 362.  doi: 10.1021/jm00333a030

    9. [9]

      (a) Xu, X.-L.; Wang, J.; Yu, C.-L.; Chen, W.; Li, Y.-C.; Li, Y.; Zhang, H.-B.; Yang, X.-D. Bioorg. Med. Chem. Lett. 2014, 24, 4926.
      (b) Liu, L.-X.; Wang, X.-Q.; Zhou, B.; Yang, L.-J.; Li, Y.; Zhang, H.-B.; Yang, X.-D. Sci. Rep. 2015, 5, 13101.
      (c) Zhou, Y.; Duan, K.; Zhu, L.; Liu, Z.; Zhang, C.; Yang, L.; Li, M.; Zhang, H.-B.; Yang, X.-D. Bioorg. Med. Chem. Lett. 2016, 26, 460.

    10. [10]

      Only the synthesis of naphthoquinone imidazoles has been mentioned: (a) Kuzentsov, V. S.; Efros, L. S. Zh. Obshch. Khim. 1967, 37, 393.
      (b) Kuzentsov, V. S.; Sobina, N. A.; Kheifets, L. Y.; Efros, L. S. Zh. Obshch. Khim. 1967, 37, 1802.

    11. [11]

      Wang, Y.; Liu, M.; Cao, R.; Zhang, W.; Yin, M.; Xiao, X.; Liu, Q.; Huang, N. J. Med. Chem. 2013, 56, 1455.  doi: 10.1021/jm3009822

    12. [12]

      Huang, P.; Wang, D.; Su, Y.; Huang, W.; Zhou, Y.; Cui, D.; Zhu, X.; Yan, D. J. Am. Chem. Soc. 2014, 136, 11748  doi: 10.1021/ja505212y

    13. [13]

      Wang, Y.; Huang, P.; Hu, M.; Huang, W.; Zhu, X.; Yan, D. Bioconjugate Chem. 2016, 27, 2722.  doi: 10.1021/acs.bioconjchem.6b00503

    14. [14]

      Joungphil, L.; Hoon, K.; Moon, J. P. Chem. Mater. 2016, 28, 2408.  doi: 10.1021/acs.chemmater.6b00624

    15. [15]

      Chesneau, B.; Hardouin-Lerouge, M.; Hudhomme, P. Org. Lett. 2010, 12, 4868.  doi: 10.1021/ol102022v

    16. [16]

      Lester, W.; Allan, R. D. J. Chem. Soc. 1959, 24, 1451.
       

    17. [17]

      Chung, K.-H.; Hong, S.-Y.; You, H.-J.; Parka, R.-E.; Ryu, C.-K. Bioorg. Med. Chem. 2006, 14, 5795.  doi: 10.1016/j.bmc.2006.05.059

    18. [18]

      Antonini, I.; Cristalli, G.; Franchetti, P.; Grifantini, M.; Martelli, S. Heterocycles 1982, 19, 2313.  doi: 10.3987/R-1982-12-2313

    19. [19]

      Anthony, L. A.; Miao, S.; Scott, M. B.; Nancy, J. B.; Stephen, B.; Seth, R. M.; Brian, M. L.; Kenneth, I. H.; Uwe, H. F. B. Org. Lett. 2009, 11, 5222.  doi: 10.1021/ol902156x

    20. [20]

      Shen, D.-Q.; Wu, N.; Li, Y.-P.; Wu, Z.-P.; Zhang, H.-B.; Huang, Z.-S.; Gu, L.-Q.; An, L.-K. Aust. J. Chem. 2010, 63, 1116.  doi: 10.1071/CH09580

    21. [21]

      Frédéric, A.; Arnaud, G.; Pascal, N.; Marie-Elizabeth, S.; Anne-Françoise, P.; Nadia, W. Bioorg. Med. Chem. Lett. 2002, 12, 977.  doi: 10.1016/S0960-894X(02)00064-1

    1. [1]

      Terwilliger, D. W.; Trauner, D. J. Am. Chem. Soc. 2018, 140, 2748.  doi: 10.1021/jacs.7b13092

    2. [2]

      Ho, S.-H. S.; Sim, M.-Y.; Yee, W.-L. S.; Yang, T.; Yuen, S.-P. J.; Go, M.-L. Eur. J. Med. Chem. 2015, 104, 42.  doi: 10.1016/j.ejmech.2015.09.026

    3. [3]

      Kim, J. S.; Lee, H.-J.; Suh, M.-E.; Choo, H.-Y. P.; Lee, S. K.; Park, H. J.; Kim, C.; Park. S. W.; Lee, C.-O. Bioorg. Med. Chem. 2004, 12, 3683.
       

    4. [4]

      Kuo, S.-C.; Ibuka, T.; Huang, L.-J.; Lien, J.-C.; Yean, S.-R.; Huang, S.-C.; Lednicer, D.; Morris-Natschke, S.; Lee, K.-H. J. Med. Chem. 1996, 39, 1447.  doi: 10.1021/jm950247k

    5. [5]

      Yoo, H.-W.; Suh, M.-E.; Park, S. W. J. Med. Chem. 1998, 41, 4716.  doi: 10.1021/jm970695n

    6. [6]

      Suh, M.-E.; Kang, M.-J.; Yoo, H.-W.; Park, S.-Y.; Lee, C.-O. Bioorg. Med. Chem. 2000, 8, 2079.
       

    7. [7]

      Liu, Z.; Zhang, Z.; Zhang, W.; Yan, D. Bioorg. Med. Chem. Lett. 2018, 28, 2454.  doi: 10.1016/j.bmcl.2018.06.007

    8. [8]

      Truitt, P.; Hayes, D.; Creagh, L. T. J. Med. Chem. 1964, 7, 362.  doi: 10.1021/jm00333a030

    9. [9]

      (a) Xu, X.-L.; Wang, J.; Yu, C.-L.; Chen, W.; Li, Y.-C.; Li, Y.; Zhang, H.-B.; Yang, X.-D. Bioorg. Med. Chem. Lett. 2014, 24, 4926.
      (b) Liu, L.-X.; Wang, X.-Q.; Zhou, B.; Yang, L.-J.; Li, Y.; Zhang, H.-B.; Yang, X.-D. Sci. Rep. 2015, 5, 13101.
      (c) Zhou, Y.; Duan, K.; Zhu, L.; Liu, Z.; Zhang, C.; Yang, L.; Li, M.; Zhang, H.-B.; Yang, X.-D. Bioorg. Med. Chem. Lett. 2016, 26, 460.

    10. [10]

      Only the synthesis of naphthoquinone imidazoles has been mentioned: (a) Kuzentsov, V. S.; Efros, L. S. Zh. Obshch. Khim. 1967, 37, 393.
      (b) Kuzentsov, V. S.; Sobina, N. A.; Kheifets, L. Y.; Efros, L. S. Zh. Obshch. Khim. 1967, 37, 1802.

    11. [11]

      Wang, Y.; Liu, M.; Cao, R.; Zhang, W.; Yin, M.; Xiao, X.; Liu, Q.; Huang, N. J. Med. Chem. 2013, 56, 1455.  doi: 10.1021/jm3009822

    12. [12]

      Huang, P.; Wang, D.; Su, Y.; Huang, W.; Zhou, Y.; Cui, D.; Zhu, X.; Yan, D. J. Am. Chem. Soc. 2014, 136, 11748  doi: 10.1021/ja505212y

    13. [13]

      Wang, Y.; Huang, P.; Hu, M.; Huang, W.; Zhu, X.; Yan, D. Bioconjugate Chem. 2016, 27, 2722.  doi: 10.1021/acs.bioconjchem.6b00503

    14. [14]

      Joungphil, L.; Hoon, K.; Moon, J. P. Chem. Mater. 2016, 28, 2408.  doi: 10.1021/acs.chemmater.6b00624

    15. [15]

      Chesneau, B.; Hardouin-Lerouge, M.; Hudhomme, P. Org. Lett. 2010, 12, 4868.  doi: 10.1021/ol102022v

    16. [16]

      Lester, W.; Allan, R. D. J. Chem. Soc. 1959, 24, 1451.
       

    17. [17]

      Chung, K.-H.; Hong, S.-Y.; You, H.-J.; Parka, R.-E.; Ryu, C.-K. Bioorg. Med. Chem. 2006, 14, 5795.  doi: 10.1016/j.bmc.2006.05.059

    18. [18]

      Antonini, I.; Cristalli, G.; Franchetti, P.; Grifantini, M.; Martelli, S. Heterocycles 1982, 19, 2313.  doi: 10.3987/R-1982-12-2313

    19. [19]

      Anthony, L. A.; Miao, S.; Scott, M. B.; Nancy, J. B.; Stephen, B.; Seth, R. M.; Brian, M. L.; Kenneth, I. H.; Uwe, H. F. B. Org. Lett. 2009, 11, 5222.  doi: 10.1021/ol902156x

    20. [20]

      Shen, D.-Q.; Wu, N.; Li, Y.-P.; Wu, Z.-P.; Zhang, H.-B.; Huang, Z.-S.; Gu, L.-Q.; An, L.-K. Aust. J. Chem. 2010, 63, 1116.  doi: 10.1071/CH09580

    21. [21]

      Frédéric, A.; Arnaud, G.; Pascal, N.; Marie-Elizabeth, S.; Anne-Françoise, P.; Nadia, W. Bioorg. Med. Chem. Lett. 2002, 12, 977.  doi: 10.1016/S0960-894X(02)00064-1

  • 加载中
    1. [1]

      Jing ZhangCharles WangYaoyao ZhangHaining XiaYujuan WangKun MaJunfeng Wang . Application of magnetotactic bacteria as engineering microrobots: Higher delivery efficiency of antitumor medicine. Chinese Chemical Letters, 2024, 35(10): 109420-. doi: 10.1016/j.cclet.2023.109420

    2. [2]

      Di ZHANGTianxiang XIEXu HEWanyu WEIQi FANJie QIAOGang JINNingbo LI . Construction and antitumor activity of pH/GSH dual-responsive magnetic nanodrug. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 786-796. doi: 10.11862/CJIC.20240329

    3. [3]

      Jiayu XuMeng LiBaoxia DongLigang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798

    4. [4]

      Xiaoru LIUJinlian SHIYajia ZHENGShuangcun MOZhongxuan XU . Two Ni-based frameworks with helices and dinuclear units constructed from semi-rigid carboxylic acid and imidazole derivatives. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 797-808. doi: 10.11862/CJIC.20240328

    5. [5]

      Jin WangXiaoyan PanJunyu ZhangQingqing ZhangYanchen LiWeiwei GuoJie Zhang . Active molecule-based theranostic agents for tumor vasculature normalization and antitumor efficacy. Chinese Chemical Letters, 2024, 35(8): 109187-. doi: 10.1016/j.cclet.2023.109187

    6. [6]

      Zhaomin TangQian HeJianren ZhouShuang YanLi JiangYudong WangChenxing YaoHuangzhao WeiKeda YangJiajia Wang . Active-transporting of charge-reversal Cu(Ⅱ)-doped mesoporous silica nanoagents for antitumor chemo/chemodynamic therapy. Chinese Chemical Letters, 2024, 35(7): 109742-. doi: 10.1016/j.cclet.2024.109742

    7. [7]

      Hong-Tao JiYu-Han LuYan-Ting LiuYu-Lin HuangJiang-Feng TianFeng LiuYan-Yan ZengHai-Yan YangYong-Hong ZhangWei-Min He . Nd@C3N4-photoredox/chlorine dual catalyzed synthesis and evaluation of antitumor activities of 4-alkylated sulfonyl ketimines. Chinese Chemical Letters, 2025, 36(2): 110568-. doi: 10.1016/j.cclet.2024.110568

Metrics
  • PDF Downloads(10)
  • Abstract views(770)
  • HTML views(43)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return