Design, Synthesis and Antitumor Activity of 1-Monosubstituted 1H-Naphtho[2, 3-d]imidazole-4, 9-diones and 1H-Anthra[2, 3-d]imidazole-4, 11-diones
- Corresponding author: Zhang Zhenfeng, zhenfeng@sjtu.edu.cn Zhang Wanbin, wanbin@sjtu.edu.cn
Citation:
Liu Zhanxiong, Yuan Jing, Zhang Zhenfeng, Yan Deyue, Zhang Wanbin. Design, Synthesis and Antitumor Activity of 1-Monosubstituted 1H-Naphtho[2, 3-d]imidazole-4, 9-diones and 1H-Anthra[2, 3-d]imidazole-4, 11-diones[J]. Chinese Journal of Organic Chemistry,
;2018, 38(12): 3302-3317.
doi:
10.6023/cjoc201807019
Terwilliger, D. W.; Trauner, D. J. Am. Chem. Soc. 2018, 140, 2748.
doi: 10.1021/jacs.7b13092
Ho, S.-H. S.; Sim, M.-Y.; Yee, W.-L. S.; Yang, T.; Yuen, S.-P. J.; Go, M.-L. Eur. J. Med. Chem. 2015, 104, 42.
doi: 10.1016/j.ejmech.2015.09.026
Kim, J. S.; Lee, H.-J.; Suh, M.-E.; Choo, H.-Y. P.; Lee, S. K.; Park, H. J.; Kim, C.; Park. S. W.; Lee, C.-O. Bioorg. Med. Chem. 2004, 12, 3683.
Kuo, S.-C.; Ibuka, T.; Huang, L.-J.; Lien, J.-C.; Yean, S.-R.; Huang, S.-C.; Lednicer, D.; Morris-Natschke, S.; Lee, K.-H. J. Med. Chem. 1996, 39, 1447.
doi: 10.1021/jm950247k
Yoo, H.-W.; Suh, M.-E.; Park, S. W. J. Med. Chem. 1998, 41, 4716.
doi: 10.1021/jm970695n
Suh, M.-E.; Kang, M.-J.; Yoo, H.-W.; Park, S.-Y.; Lee, C.-O. Bioorg. Med. Chem. 2000, 8, 2079.
Liu, Z.; Zhang, Z.; Zhang, W.; Yan, D. Bioorg. Med. Chem. Lett. 2018, 28, 2454.
doi: 10.1016/j.bmcl.2018.06.007
Truitt, P.; Hayes, D.; Creagh, L. T. J. Med. Chem. 1964, 7, 362.
doi: 10.1021/jm00333a030
(a) Xu, X.-L.; Wang, J.; Yu, C.-L.; Chen, W.; Li, Y.-C.; Li, Y.; Zhang, H.-B.; Yang, X.-D. Bioorg. Med. Chem. Lett. 2014, 24, 4926.
(b) Liu, L.-X.; Wang, X.-Q.; Zhou, B.; Yang, L.-J.; Li, Y.; Zhang, H.-B.; Yang, X.-D. Sci. Rep. 2015, 5, 13101.
(c) Zhou, Y.; Duan, K.; Zhu, L.; Liu, Z.; Zhang, C.; Yang, L.; Li, M.; Zhang, H.-B.; Yang, X.-D. Bioorg. Med. Chem. Lett. 2016, 26, 460.
Only the synthesis of naphthoquinone imidazoles has been mentioned: (a) Kuzentsov, V. S.; Efros, L. S. Zh. Obshch. Khim. 1967, 37, 393.
(b) Kuzentsov, V. S.; Sobina, N. A.; Kheifets, L. Y.; Efros, L. S. Zh. Obshch. Khim. 1967, 37, 1802.
Wang, Y.; Liu, M.; Cao, R.; Zhang, W.; Yin, M.; Xiao, X.; Liu, Q.; Huang, N. J. Med. Chem. 2013, 56, 1455.
doi: 10.1021/jm3009822
Huang, P.; Wang, D.; Su, Y.; Huang, W.; Zhou, Y.; Cui, D.; Zhu, X.; Yan, D. J. Am. Chem. Soc. 2014, 136, 11748
doi: 10.1021/ja505212y
Wang, Y.; Huang, P.; Hu, M.; Huang, W.; Zhu, X.; Yan, D. Bioconjugate Chem. 2016, 27, 2722.
doi: 10.1021/acs.bioconjchem.6b00503
Joungphil, L.; Hoon, K.; Moon, J. P. Chem. Mater. 2016, 28, 2408.
doi: 10.1021/acs.chemmater.6b00624
Chesneau, B.; Hardouin-Lerouge, M.; Hudhomme, P. Org. Lett. 2010, 12, 4868.
doi: 10.1021/ol102022v
Chung, K.-H.; Hong, S.-Y.; You, H.-J.; Parka, R.-E.; Ryu, C.-K. Bioorg. Med. Chem. 2006, 14, 5795.
doi: 10.1016/j.bmc.2006.05.059
Antonini, I.; Cristalli, G.; Franchetti, P.; Grifantini, M.; Martelli, S. Heterocycles 1982, 19, 2313.
doi: 10.3987/R-1982-12-2313
Anthony, L. A.; Miao, S.; Scott, M. B.; Nancy, J. B.; Stephen, B.; Seth, R. M.; Brian, M. L.; Kenneth, I. H.; Uwe, H. F. B. Org. Lett. 2009, 11, 5222.
doi: 10.1021/ol902156x
Shen, D.-Q.; Wu, N.; Li, Y.-P.; Wu, Z.-P.; Zhang, H.-B.; Huang, Z.-S.; Gu, L.-Q.; An, L.-K. Aust. J. Chem. 2010, 63, 1116.
doi: 10.1071/CH09580
Frédéric, A.; Arnaud, G.; Pascal, N.; Marie-Elizabeth, S.; Anne-Françoise, P.; Nadia, W. Bioorg. Med. Chem. Lett. 2002, 12, 977.
doi: 10.1016/S0960-894X(02)00064-1
Terwilliger, D. W.; Trauner, D. J. Am. Chem. Soc. 2018, 140, 2748.
doi: 10.1021/jacs.7b13092
Ho, S.-H. S.; Sim, M.-Y.; Yee, W.-L. S.; Yang, T.; Yuen, S.-P. J.; Go, M.-L. Eur. J. Med. Chem. 2015, 104, 42.
doi: 10.1016/j.ejmech.2015.09.026
Kim, J. S.; Lee, H.-J.; Suh, M.-E.; Choo, H.-Y. P.; Lee, S. K.; Park, H. J.; Kim, C.; Park. S. W.; Lee, C.-O. Bioorg. Med. Chem. 2004, 12, 3683.
Kuo, S.-C.; Ibuka, T.; Huang, L.-J.; Lien, J.-C.; Yean, S.-R.; Huang, S.-C.; Lednicer, D.; Morris-Natschke, S.; Lee, K.-H. J. Med. Chem. 1996, 39, 1447.
doi: 10.1021/jm950247k
Yoo, H.-W.; Suh, M.-E.; Park, S. W. J. Med. Chem. 1998, 41, 4716.
doi: 10.1021/jm970695n
Suh, M.-E.; Kang, M.-J.; Yoo, H.-W.; Park, S.-Y.; Lee, C.-O. Bioorg. Med. Chem. 2000, 8, 2079.
Liu, Z.; Zhang, Z.; Zhang, W.; Yan, D. Bioorg. Med. Chem. Lett. 2018, 28, 2454.
doi: 10.1016/j.bmcl.2018.06.007
Truitt, P.; Hayes, D.; Creagh, L. T. J. Med. Chem. 1964, 7, 362.
doi: 10.1021/jm00333a030
(a) Xu, X.-L.; Wang, J.; Yu, C.-L.; Chen, W.; Li, Y.-C.; Li, Y.; Zhang, H.-B.; Yang, X.-D. Bioorg. Med. Chem. Lett. 2014, 24, 4926.
(b) Liu, L.-X.; Wang, X.-Q.; Zhou, B.; Yang, L.-J.; Li, Y.; Zhang, H.-B.; Yang, X.-D. Sci. Rep. 2015, 5, 13101.
(c) Zhou, Y.; Duan, K.; Zhu, L.; Liu, Z.; Zhang, C.; Yang, L.; Li, M.; Zhang, H.-B.; Yang, X.-D. Bioorg. Med. Chem. Lett. 2016, 26, 460.
Only the synthesis of naphthoquinone imidazoles has been mentioned: (a) Kuzentsov, V. S.; Efros, L. S. Zh. Obshch. Khim. 1967, 37, 393.
(b) Kuzentsov, V. S.; Sobina, N. A.; Kheifets, L. Y.; Efros, L. S. Zh. Obshch. Khim. 1967, 37, 1802.
Wang, Y.; Liu, M.; Cao, R.; Zhang, W.; Yin, M.; Xiao, X.; Liu, Q.; Huang, N. J. Med. Chem. 2013, 56, 1455.
doi: 10.1021/jm3009822
Huang, P.; Wang, D.; Su, Y.; Huang, W.; Zhou, Y.; Cui, D.; Zhu, X.; Yan, D. J. Am. Chem. Soc. 2014, 136, 11748
doi: 10.1021/ja505212y
Wang, Y.; Huang, P.; Hu, M.; Huang, W.; Zhu, X.; Yan, D. Bioconjugate Chem. 2016, 27, 2722.
doi: 10.1021/acs.bioconjchem.6b00503
Joungphil, L.; Hoon, K.; Moon, J. P. Chem. Mater. 2016, 28, 2408.
doi: 10.1021/acs.chemmater.6b00624
Chesneau, B.; Hardouin-Lerouge, M.; Hudhomme, P. Org. Lett. 2010, 12, 4868.
doi: 10.1021/ol102022v
Chung, K.-H.; Hong, S.-Y.; You, H.-J.; Parka, R.-E.; Ryu, C.-K. Bioorg. Med. Chem. 2006, 14, 5795.
doi: 10.1016/j.bmc.2006.05.059
Antonini, I.; Cristalli, G.; Franchetti, P.; Grifantini, M.; Martelli, S. Heterocycles 1982, 19, 2313.
doi: 10.3987/R-1982-12-2313
Anthony, L. A.; Miao, S.; Scott, M. B.; Nancy, J. B.; Stephen, B.; Seth, R. M.; Brian, M. L.; Kenneth, I. H.; Uwe, H. F. B. Org. Lett. 2009, 11, 5222.
doi: 10.1021/ol902156x
Shen, D.-Q.; Wu, N.; Li, Y.-P.; Wu, Z.-P.; Zhang, H.-B.; Huang, Z.-S.; Gu, L.-Q.; An, L.-K. Aust. J. Chem. 2010, 63, 1116.
doi: 10.1071/CH09580
Frédéric, A.; Arnaud, G.; Pascal, N.; Marie-Elizabeth, S.; Anne-Françoise, P.; Nadia, W. Bioorg. Med. Chem. Lett. 2002, 12, 977.
doi: 10.1016/S0960-894X(02)00064-1
Jing Zhang , Charles Wang , Yaoyao Zhang , Haining Xia , Yujuan Wang , Kun Ma , Junfeng Wang . Application of magnetotactic bacteria as engineering microrobots: Higher delivery efficiency of antitumor medicine. Chinese Chemical Letters, 2024, 35(10): 109420-. doi: 10.1016/j.cclet.2023.109420
Di ZHANG , Tianxiang XIE , Xu HE , Wanyu WEI , Qi FAN , Jie QIAO , Gang JIN , Ningbo LI . Construction and antitumor activity of pH/GSH dual-responsive magnetic nanodrug. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 786-796. doi: 10.11862/CJIC.20240329
Jiayu Xu , Meng Li , Baoxia Dong , Ligang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798
Xiaoru LIU , Jinlian SHI , Yajia ZHENG , Shuangcun MO , Zhongxuan XU . Two Ni-based frameworks with helices and dinuclear units constructed from semi-rigid carboxylic acid and imidazole derivatives. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 797-808. doi: 10.11862/CJIC.20240328
Jin Wang , Xiaoyan Pan , Junyu Zhang , Qingqing Zhang , Yanchen Li , Weiwei Guo , Jie Zhang . Active molecule-based theranostic agents for tumor vasculature normalization and antitumor efficacy. Chinese Chemical Letters, 2024, 35(8): 109187-. doi: 10.1016/j.cclet.2023.109187
Zhaomin Tang , Qian He , Jianren Zhou , Shuang Yan , Li Jiang , Yudong Wang , Chenxing Yao , Huangzhao Wei , Keda Yang , Jiajia Wang . Active-transporting of charge-reversal Cu(Ⅱ)-doped mesoporous silica nanoagents for antitumor chemo/chemodynamic therapy. Chinese Chemical Letters, 2024, 35(7): 109742-. doi: 10.1016/j.cclet.2024.109742
Hong-Tao Ji , Yu-Han Lu , Yan-Ting Liu , Yu-Lin Huang , Jiang-Feng Tian , Feng Liu , Yan-Yan Zeng , Hai-Yan Yang , Yong-Hong Zhang , Wei-Min He . Nd@C3N4-photoredox/chlorine dual catalyzed synthesis and evaluation of antitumor activities of 4-alkylated sulfonyl ketimines. Chinese Chemical Letters, 2025, 36(2): 110568-. doi: 10.1016/j.cclet.2024.110568
Reaction conditions: (a) N2H4·H2O, 80 ℃, 4 h, 82% yield; (b) HCOOH, reflux, 6 h, 99% yield; (c) KOH, RX (X=Br or I), DMSO; (d) cyclopropylamine, CHCl3, 5 h, 69% yield; (e) N2H4·H2O, 80 ℃, used directly for next step; (f) triethyl orthoformate, reflux, 3 h, 38% yield; (g) RNH2, Et3N, THF, 8~26 h, 75~87% yield; (h) N2H4·H2O, 80~85 ℃, 40 min~2 h, 29~45% yield; (i) triethyl orthoformate, reflux 0.5~8 h, 40%~90% yield.
Reaction conditions: (a) NaH, MeI, THF, reflux, 2 h, 50% yield; (b) HBr (48 wt%), reflux, 3 h, 88% yield; (c) aq. FeCl3, r.t., 79% yield; (d) HBr (48 wt%), reflux, 3 h, 99% yield; (e) aq. FeCl3, r.t., 78% yield; (f) conc. HNO3, conc. HCl, 85~90 ℃, 2 h, then r.t., 3 h, 78% yield; (g) KOH, MeI, DMSO, r.t., 66% yield; (h) cyclopenta-1, 3-diene, MeOH, r.t., 97% yield; (i) KOH, MeI, DMSO, r.t., 20% yield; (j) conc. H2SO4, fuming HNO3, 0 ℃, then r.t., 69% yield; (k) H2, Pd/C (10%), MeOH, 50 ℃, then HCl, 77% yield; (l) FeCl3·6H2O, r.t., then HCl, 95% yield; (m) KOH, MeI, DMSO, r.t., 41% yield.
Reaction conditions: (a) HCOOH, reflux, 6 h, 99% yield; (b) KOH, MeI, DMSO, r.t., 24%~99% yield; (c) CH3COOH, reflux, 74% yield; (d) KOH, MeI, DMSO, r.t., 25%~52% yield.
Cells were treated with 2, 4 and 8 μmol·L-1 of compound 4t for 24 h.
Cells were treated with 2, 4 and 8 μmol·L-1 of compound 4t for 24 h. Cell cycle was determined by PI (propidium iodide) staining and cell cytometry