Citation: Qiu Zhipeng, Tan Jihua, Cai Ning, Wang Kai, Ji Shaomin, Huo Yanping. Progress on Phenanthroimidazole Derivatives in Blue-Emitting Materials[J]. Chinese Journal of Organic Chemistry, ;2019, 39(3): 679-696. doi: 10.6023/cjoc201807007 shu

Progress on Phenanthroimidazole Derivatives in Blue-Emitting Materials

  • Corresponding author: Ji Shaomin, smji@gdut.edu.cn Huo Yanping, organicteacherhuo@126.com
  • Received Date: 3 July 2018
    Revised Date: 20 September 2018
    Available Online: 19 March 2018

    Fund Project: the Science and Technology Planning Project of Guangdong Province 201707010243the Natural Science Foundation of Guangdong Province 2017A030310039Project supported by the Natural Science Foundation of Guangdong Province (No. 2017A030310039), the National Natural Science Foundation of China (No. 61671162), the Science and Technology Planning Project of Guangdong Province (No. 2016A010103031), the Key Project of Educational Commission of Guangdong Province (No. 2017KZDXM025), the Science and Technology Planning Project of Guangdong Province (No. 201707010243), and the Guangdong Youth Pearl River Scholar (2016)the Key Project of Educational Commission of Guangdong Province 2017KZDXM025the Science and Technology Planning Project of Guangdong Province 2016A010103031the National Natural Science Foundation of China 61671162the Guangdong Youth Pearl River Scholar 2016

Figures(9)

  • The impending global energy crisis and inefficient energy utilization have driven the use of energy efficient devices for display and lighting applications. Energy-efficient organic light emitting diodes (OLEDs) are considered to be the next generation of smart displays, becoming one of the most competitive candidate for future energy-efficient lighting sources. The molecular design of high-efficiency deep blue materials are greatly limited due to their inherent wide bandgap, poor carrier charge balance and their low efficiency in the solid state. As a novel building block for blue-emitting materials, phenanthroimidazole (PI) group is attractive stems from their bipolar feature and excellent fluorescence efficiency, which has aroused strong interest of researchers. Molecular design and photophysical properties of phenanthroimidazole-based deep blue-emitting materials are of great significance. In this review, an overview of the recent studies on PI-based blue emitters for applications in organic light-emitting diodes (OLEDs) is presented. The luminescence mechanism, design and latest developments of the electroluminescent devices fabricated from phenanthroimidazole derivatives are described, and their prospects in the future of full-color display and solid-state lighting are forecasted.
  • 加载中
    1. [1]

      Tonzola, C. J.; Kulkarni, A. P.; Gifford, A. P.; Kaminsky, W.; Jenekhe, S. A. Adv. Funct. Mater. 2010, 17, 863.
       

    2. [2]

      Forrest, S. R. Nature 2004, 428, 911.  doi: 10.1038/nature02498

    3. [3]

      Mitschke, U.; B uerle, P. J. Chem. Mater. 2000, 10, 1471.  doi: 10.1039/a908713c

    4. [4]

      Wei, B.; Liu, J. Z.; Zhang, Y.; Zhang, J. H.; Peng, H. N.; Fan, H. L.; He, Y. B.; Gao, X. C. Adv. Funct. Mater. 2010, 20, 2448.  doi: 10.1002/adfm.v20:15

    5. [5]

      Chu, T. Y.; Song, O. K. Appl. Phys. Lett. 2007, 90, 151.
       

    6. [6]

      Huang, H.; Wang, Y.; Wang, B.; Zhuang, S.; Pan, B.; Yang, X.; Wang, L.; Yang, C. J. Mater. Chem. C 2013, 1, 5899.  doi: 10.1039/c3tc30832d

    7. [7]

      Chien, C. H.; Chen, C. K.; Hsu, F. M.; Shu, C. F.; Chou, P. T.; Lai, C. H. Adv. Funct. Mater. 2010, 19, 560.

    8. [8]

      Goushi, K.; Kou, Y.; Sato, K.; Adachi, C. Nat. Photonics 2012, 6, 253.  doi: 10.1038/nphoton.2012.31

    9. [9]

      Lin, M. S.; Chi, L. C.; Chang, H. W.; Huang, Y. H.; Tien, K. C.; Chen, C. C.; Chang, C. H.; Wu, C. C.; Chaskar, A.; Chou, S. H. J. Chem. Mater. 2011, 22, 870.
       

    10. [10]

      Chou, H. H.; Cheng, C. H. Adv. Mater. 2010, 22, 2468.  doi: 10.1002/adma.v22:22

    11. [11]

      Yook, K. S.; Lee, J. Y. Adv. Mater. 2012, 24, 3169.  doi: 10.1002/adma.v24.24

    12. [12]

      Lee, S. J.; Park, J. S.; Yoon, K. J.; Kim, Y. I.; Jin, S. H.; Kang, S. K.; Gal, Y. S.; Kang, S.; Lee, J. Y.; Kang, J. W. Adv. Funct. Mater. 2010, 18, 3922.
       

    13. [13]

      Zhao, G.; Liu, Y.; Zhiming, W.; Shen, F.; He, L.; Sun, G.; Liang, Y.; Ying, L.; Ping, L.; Ma, Y. Chemistry. 2013, 19, 2602.  doi: 10.1002/chem.201203335

    14. [14]

      Shih, P. I.; Chuang, C. Y.; Chien, C. H.; Diau, E. W. G.; Shu, C. F. Adv. Funct. Mater. 2010, 17, 3141.
       

    15. [15]

      Kim, R.; Lee, S.; Kim, K. H.; Lee, Y. J.; Kwon, S. K.; Kim, J. J.; Kim, Y. H. Chem. Commun. 2013, 49, 4664.  doi: 10.1039/c3cc41441h

    16. [16]

      Zheng, C. J.; Zhao, W. M.; Wang, Z. Q.; Huang, D.; Ye, J.; Ou, X. M.; Zhang, X. H.; Lee, C. S.; Lee, S. T. J. Chem. Mater. 2010, 20, 1560.  doi: 10.1039/b918739a

    17. [17]

      Moorthy, J. N.; Natarajan, P.; Venkatakrishnan, P.; Huang, D. F.; Chow, T. J. Org. Lett. 2007, 9, 5215.  doi: 10.1021/ol7023136

    18. [18]

      Tao, S. L.; Peng, Z. K.; Zhang, X. H.; Wang, P. F.; Lee, C. S.; Lee, S. T. Adv. Funct. Mater. 2010, 15, 1716.

    19. [19]

      Tong, Q. X.; Lai, S. L.; Chan, M. Y.; Zhou, Y. C.; Kwong, H. L.; Lee, C. S.; Lee, S. T. Chem. Mater. 2008, 20, 6310.  doi: 10.1021/cm801304t

    20. [20]

      Lin, S. L.; Chan, L. H.; Lee, R. H.; Yen, M. Y.; Kuo, W. J.; Chen, C. T.; Jeng, R. J. Adv. Mater. 2008, 20, 3947.  doi: 10.1002/adma.v20:20

    21. [21]

      Zhang, Q.; Li, J.; Shizu, K.; Huang, S.; Hirata, S.; Miyazaki, H.; Adachi, C. J. Am. Chem. Soc. 2012, 134, 14706.  doi: 10.1021/ja306538w

    22. [22]

      Hirata, S.; Sakai, Y.; Masui, K.; Tanaka, H.; Lee, S. Y.; Nomura, H.; Nakamura, N.; Yasumatsu, M.; Nakanotani, H.; Zhang, Q. Nat. Mater. 2015, 14, 330.  doi: 10.1038/nmat4154

    23. [23]

      Zhang, Y.; Lai, S. L.; Tong, Q. X.; Lo, M. F.; Ng, T. W.; Chan, M. Y.; Wen, Z. C.; He, J.; Jeff, K. S.; Tang, X. L. Chem. Mater. 2012, 24, 61.  doi: 10.1021/cm201789u

    24. [24]

      Li, W.; Liu, D.; Shen, F.; Ma, D.; Wang, Z.; Feng, T.; Xu, Y.; Yang, B.; Ma, Y. Adv. Funct. Mater. 2012, 22, 2797.  doi: 10.1002/adfm.v22.13

    25. [25]

      Zhang, Y.; Lai, S. L.; Tong, Q. X.; Chan, M. Y.; Ng, T. W.; Wen, Z. C.; Zhang, G. Q.; Lee, S. T.; Kwong, H. L.; Lee, C. S. J. Chem. Mater. 2011, 21, 8206.  doi: 10.1039/c1jm10326a

    26. [26]

      Huang, H.; Wang, Y.; Zhuang, S.; Yang, X.; Wang, L.; Yang, C. J. Phys. Chem. C 2012, 116, 19458.  doi: 10.1021/jp305764b

    27. [27]

      Yuan, Y.; Chen, J. X.; Lu, F.; Tong, Q. X.; Yang, Q. D.; Mo, H. W.; Ng, T. W.; Wong, F. L.; Guo, Z. Q.; Ye, J. Chem. Mater. 2013, 25, 4957.  doi: 10.1021/cm4030414

    28. [28]

      Chen, W. C.; Yuan, Y.; Wu, G. F.; Wei, H. X.; Tang, L.; Tong, Q. X.; Wong, F. L.; Lee, C. S. Adv. Opt. Mater. 2014, 2, 626.  doi: 10.1002/adom.201400078

    29. [29]

      Yuan, Y.; Li, D.; Zhang, X.; Zhao, X.; Liu, Y.; Zhang, J.; Wang, Y. New J. Chem. 2011, 35, 1534.  doi: 10.1039/c1nj20072k

    30. [30]

      Richaud, A.; Barba-Behrens, N.; Méndez, F. Org. Lett. 2011, 13, 972.  doi: 10.1021/ol103011h

    31. [31]

      Duan, L.; Qiao, J.; Sun, Y.; Qiu, Y. Adv. Mater. 2011, 23, 1137.  doi: 10.1002/adma.201003816

    32. [32]

      Wang, Z.; Lu, P.; Chen, S.; Gao, Z.; Shen, F.; Zhang, W.; Xu, Y.; Kwok, H. S.; Ma, Y. J. Chem. Mater. 2011, 21, 5451.  doi: 10.1039/c1jm10321k

    33. [33]

      Wang, Z.; Feng, Y.; Zhang, S.; Gao, Y.; Gao, Z.; Chen, Y.; Zhang, X.; Lu, P.; Yang, B.; Chen, P. Phys. Chem. Chem. Phys. 2014, 16, 20772.  doi: 10.1039/C4CP03284E

    34. [34]

      Liang, X.; Wang, Z.; Wang, L.; Hanif, M.; Hu, D.; Su, S.; Xie, Z.; Gao, Y.; Yang, B.; Ma, Y. Chin. J. Chem. 2017, 35.

    35. [35]

      Chen, W. C.; Tong, Q. X.; Lee, C. S. Sci. Adv. Mater. 2015, 7, 2193.  doi: 10.1166/sam.2015.2264

    36. [36]

      Jiang, J.; Hu, D.; Hanif, M.; Li, X.; Su, S.; Xie, Z.; Liu, L.; Zhang, S.; Yang, B.; Ma, Y. Adv. Opt. Mater. 2016, 4, 2109.  doi: 10.1002/adom.v4.12

    37. [37]

      Gong, S.; Chen, Y.; Luo, J.; Yang, C.; Zhong, C.; Qin, J.; Ma, D. Adv. Funct. Mater. 2011, 21, 1168.  doi: 10.1002/adfm.201002066

    38. [38]

      Eakins, G. L.; Alford, J. S.; Tiegs, B. J.; Breyfogle, B. E.; Stearman, C. J. J. Phys. Org. Chem. 2011, 24, 1119.  doi: 10.1002/poc.v24.11

    39. [39]

      Tan, Y.; Zhao, Z.; Shang, L.; Liu, Y.; Wei, C.; Li, J.; Wei, H.; Liu, Z.; Bian, Z.; Huang, C. J. Mater. Chem. C 2017, 5, 11901.  doi: 10.1039/C7TC04089J

    40. [40]

      Li, W.; Pan, Y.; Xiao, R.; Peng, Q.; Zhang, S.; Ma, D.; Li, F.; Shen, F.; Wang, Y.; Yang, B. Adv. Funct. Mater. 2014, 24, 1609.  doi: 10.1002/adfm.v24.11

    41. [41]

      Wang, Q.; Ma, D. Chem. Soc. Rev. 2010, 39, 2387.  doi: 10.1039/b909057f

    42. [42]

      Zhang, S.; Li, W.; Yao, L.; Pan, Y.; Shen, F.; Xiao, R.; Yang, B.; Ma, Y. Chem. Commun. 2013, 49, 11302.  doi: 10.1039/c3cc47130f

    43. [43]

      Zhang, S.; Yao, L.; Peng, Q.; Li, W.; Pan, Y.; Xiao, R.; Gao, Y.; Gu, C.; Wang, Z.; Lu, P.; Li, F.; Su, S.; Yang, B.; Ma, Y. Adv. Funct. Mater. 2015, 25, 1755.  doi: 10.1002/adfm.201404260

    44. [44]

      Liu, B.; Yuan, Y.; He, D.; Huang, D. Y.; Luo, C. Y.; Zhu, Z. L.; Lu, F.; Tong, Q. X.; Lee, C. S. Chemistry 2016, 22, 12130.  doi: 10.1002/chem.201602122

    45. [45]

      Chen, W. C.; Yuan, Y.; Ni, S. F.; Tong, Q. X.; Wong, F. L.; Lee, C. S. Chem. Sci. 2017, 8, 3599.  doi: 10.1039/C6SC05619A

    46. [46]

      Liu, B.; Yu, Z. W.; He, D.; Zhu, Z. L.; Zheng, J.; Yu, Y. D.; Xie, W. F.; Tong, Q. X.; Lee, C.-S. J. Mater. Chem. C 2017, 5, 5402.
       

    47. [47]

      Wang, Z. Y.; Liu, B.; Zhao, J. W.; Ruan, G. L.; Tao, S. L.; Tong, Q. X. Org. Electron. 2018, 52, 89.  doi: 10.1016/j.orgel.2017.09.051

    48. [48]

      Chen, W. C.; Yuan, Y.; Zhu, Z. L.; Jiang, Z. Q.; Liao, L. S.; Lee, C. S. Adv. Opt. Mater. 2018, 6, 1700855.  doi: 10.1002/adom.v6.2

    49. [49]

      Zhu, Z. L.; Ni, S. F.; Chen, W.; Chen, M.; Zhu, J.; Yuan, Y.; Tong, Q. X.; Wong, F. L.; Lee, C. J. Mater. Chem. C 2018, 6, 3584.  doi: 10.1039/C7TC04972B

    50. [50]

      Zhao, J.; Liu, B.; Wang, Z.; Tong, Q. X.; Du, X.; Zheng, C. J.; Lin, H.; Tao, S. L.; Zhang, X. H. ACS Appl. Mater. Interfaces 2018, 10, 9629.  doi: 10.1021/acsami.7b19646

    51. [51]

      Sinha, S.; Rothe, C.; Güntner, R.; Scherf, U.; Monkman, A. P. Phys. Rev. Lett. 2003, 90, 127402.  doi: 10.1103/PhysRevLett.90.127402

    52. [52]

      Chiang, C. J.; Kimyonok, A.; Etherington, M. K.; Griffiths, G. C.; Jankus, V.; Turksoy, F.; Monkman, A. P. Adv. Funct. Mater. 2013, 23, 739.  doi: 10.1002/adfm.v23.6

    53. [53]

      Kido, J.; Iizumi, Y. Appl. Phys. Lett. 1998, 73, 2721.  doi: 10.1063/1.122570

    54. [54]

      Kondakov, D. Y.; Pawlik, T. D.; Hatwar, T. K.; Spindler, J. P. J. Appl. Phys. 2009, 106, 30.

    55. [55]

      Chen, Y. H.; Lin, C. C.; Huang, M. J.; Hung, K.; Wu, Y. C.; Lin, W. C.; Chencheng, R. W.; Lin, H. W.; Cheng, C. H. Chem. Sci. 2016, 7, 4044..  doi: 10.1039/C6SC00100A

    56. [56]

      Chou, P. Y.; Chou, H. H.; Chen, Y. H.; Su, T. H.; Liao, C. Y.; Lin, H. W.; Lin, W. C.; Yen, H. Y.; Chen, I. C.; Cheng, C. H. Chem. Commun. 2014, 50, 6869.  doi: 10.1039/C4CC01851F

    57. [57]

      Zhang, D.; Zhang, D.; Duan, L. ACS Appl. Mater. Interfaces 2016, 8, 23197.  doi: 10.1021/acsami.6b07107

    58. [58]

      Kim, B.; Park, Y.; Lee, J.; Yokoyama, D.; Lee, J. H.; Kido, J.; Park, J. J. Mater. Chem C 2012, 1, 432

    59. [59]

      Shan, T.; Gao, Z.; Tang, X.; He, X.; Gao, Y.; Li, J.; Sun, X.; Liu, Y.; Liu, H.; Yang, B.; Lu, P.; Ma, Y. Dyes Pigm. 2017, 142, 189.  doi: 10.1016/j.dyepig.2017.03.032

    60. [60]

      Tang, X.; Bai, Q.; Shan, T.; Li, J.; Gao, Y.; Liu, F.; Liu, H.; Peng, Q.; Yang, B.; Li, F.; Lu, P. Adv. Funct. Mater. 2018, 28, 11.

    61. [61]

      Baldo, M. A.; O'Brien, D. F.; Thompson, M. E.; Forrest, S. R. Phys. Rev. B 1999, 60, 14422.  doi: 10.1103/PhysRevB.60.14422

    62. [62]

      Tan, J. H.; Huo, Y. P.; Cai, N.; Ji, S, M.; Li, Z. Z.; Zhang, L. Chin. J. Org. Chem. 2017, 37, 2457(in Chinese).
       

    63. [63]

      Endo, A.; Mai, O.; Takahashi, A.; Yokoyama, D.; Kato, Y.; Adachi, C. Adv. Mater. 2010, 21, 4802.

    64. [64]

      Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Nature 2012, 492, 234.  doi: 10.1038/nature11687

    65. [65]

      Hirata, S.; Sakai, Y.; Masui, K.; Tanaka, H.; Lee, S. Y.; Nomura, H.; Nakamura, N.; Mao, Y.; Nakanotani, H.; Zhang, Q. Nat. Mater. 2015, 14, 330.  doi: 10.1038/nmat4154

    66. [66]

      Huang, Z.; Xiang, S.; Zhang, Q.; Lv, X.; Ye, S.; Guo, R.; Wang, L. J. Mater. Chem. C 2018, 6, 2379.

    67. [67]

      Pei, Q.; Yang, Y.; Yu, G.; Zhang, C.; Heeger, A. J. J. Am. Chem. Soc. 1996, 118, 3922.  doi: 10.1021/ja953695q

    68. [68]

      Matyba, P.; Yamaguchi, H.; Chhowalla, M.; Robinson, N. D.; Edman, L. ACS Nano. 2011, 5, 574.  doi: 10.1021/nn102704h

    69. [69]

      Pertegás, A.; Tordera, D.; Serrano-Pérez, J. J.; Ortí, E.; Bolink, H. J. J. Am. Chem. Soc. 2013, 135, 18008.  doi: 10.1021/ja407515w

    70. [70]

      Subeesh, M. S.; Shanmugasundaram, K.; Sunesh, C. D.; Won, Y. S.; Choe, Y. J. Mater. Chem. C 2015, 3, 4683.  doi: 10.1039/C5TC00151J

    71. [71]

      Subeesh, M. S.; Shanmugasundaram, K.; Sunesh, C. D.; Chitumalla, R. K.; Jang, J.; Choe, Y. J. Phys. Chem. C 2016, 120, 12207.  doi: 10.1021/acs.jpcc.6b03710

    72. [72]

      Subeesh, M. S.; Shanmugasundaram, K.; Sunesh, C. D.; Nguyen, T. P.; Choe, Y. J. Phys. Chem. C 2015, 119, 23676.  doi: 10.1021/acs.jpcc.5b07871

    73. [73]

      Subeesh, M. S.; Nguyen, T. P.; Choe, Y. J. Phys. Chem. C 2017, 121, 14811.  doi: 10.1021/acs.jpcc.7b03911

    74. [74]

      Zhao, G. S.; Shi, C. X.; Guo, Z. Q.; Zhu, W. H.; Zhu, S. Q. Chin. J. Org. Chem. 2012, 32, 1620(in Chinese).
       

    75. [75]

      Li, Z. Z.; Huo, Y. P.; Yang, X. H.; Ji, S. M. Chin. J. Org. Chem. 2016, 36, 2317(in Chinese).
       

    76. [76]

      Cai, Y.; Du, L.; Samedov, K.; Gu, X.; Fei, Q. I.; Sung, H. H.; Patrick, B. O.; Yan, Z.; Jiang, X.; Zhang, H. Chem. Sci. 2018, 9, 4662.  doi: 10.1039/C8SC01170B

    77. [77]

      Qiu, S. H.; Xu, S. J.; Zhou, G. F.; Shui, L. L.; Zhu, X. Z. Chin. J. Org. Chem. 2015, 35, 1746(in Chinese).
       

    78. [78]

      Song, M.; Chen, Z.; Yu, G. B.; Yin, J.; Liu, S. H. Chin. J. Org. Chem. 2015, 35, 681(in Chinese).
       

    79. [79]

      Jadhav, T.; Choi, J. M.; Shinde, J.; Lee, J. Y.; Misra, R. J. Mater. Chem. C 2017, 5, 6014.  doi: 10.1039/C7TC00950J

    80. [80]

      Ekbote, A.; Han, S. H.; Jadhav, T.; Mobin, S. M.; Lee, J. Y.; Misra, R. J. Mater. Chem. C 2018, 6, 2077.  doi: 10.1039/C7TC05450E

    81. [81]

      Xie, Z.; Chen, C.; Xu, S.; Li, J.; Zhang, Y.; Liu, S.; Xu, J.; Chi, Z. Angew. Chem., Int. Ed. 2015, 127, 7181.
       

    82. [82]

      Xu, S.; Liu, T.; Mu, Y.; Wang, Y. F.; Chi, Z.; Lo, C. C.; Liu, S.; Zhang, Y.; Lien, A.; Xu, J. Angew. Chem., Int. Ed. 2015, 54, 874.  doi: 10.1002/anie.201409767

    83. [83]

      Li, G.; Zhao, J.; Zhang, D.; Shi, Z.; Zhu, Z.; Song, H. Q.; Zhu, J.; Tao, S. L.; Lu, F.; Tong, Q. X. J. Mater. Chem. C 2016, 4, 8787.  doi: 10.1039/C6TC02917E

    84. [84]

      Fleetham, T.; Li, G.; Wen, L.; Li, J. Adv. Mater. 2014, 26, 7116.  doi: 10.1002/adma.201401759

    85. [85]

      Zhang, C.; Ji, K.; Wang, X.; Wu, H.; Liu, C. Chem. Commun. 2015, 51, 8173.  doi: 10.1039/C5CC01280E

    86. [86]

      Dou, C.; Han, L.; Zhao, S.; Zhang, H.; Wang, Y. J. Phys. Chem. Lett. 2011, 2, 666.  doi: 10.1021/jz200140c

    87. [87]

      Karabunarliev, S.; Baumgarten, M.; Tyutyulkov, N.; Muellen, K. J. Phy. Chem. 1994, 98, 11892.  doi: 10.1021/j100097a015

    88. [88]

      Romain, M.; Tondelier, D.; Vanel, J. C.; Geffroy, B.; Jeannin, O.; Raultberthelot, J.; Métivier, R.; Poriel, C. Angew. Chem. Int. Ed. 2013, 125, 14397.  doi: 10.1002/ange.201306668

    89. [89]

      Romain, M.; Thiery, S.; Shirinskaya, A.; Declairieux, C.; Tondelier, D.; Geffroy, B.; Jeannin, O.; Rault-Berthelot, J.; Métivier, R.; Poriel, C. Angew. Chem. Int. Ed. 2015, 54, 1176.  doi: 10.1002/anie.201409479

    90. [90]

      Jing, H.; Ning, S.; Dong, Y.; Tang, R.; Ping, L.; Ping, C.; Li, Q.; Ma, D.; Qin, J.; Zhen, L. Adv. Funct. Mater. 2013, 23, 2329.  doi: 10.1002/adfm.201202639

    91. [91]

      Zhu, Z. L.; Chen, W. C.; Zhang, L. D.; Liu, X. L.; Tong, Q. X.; Wong, F. L.; Lu, F.; Lee, C. S. J. Mater. Chem. C 2016, 26, 6249
       

    92. [92]

      Du, X.; Li, G.; Zhao, J.; Tao, S.; Zheng, C.; Lin, H.; Tong, Q.; Zhang, X. Adv. Opt. Mater. 2017, 5, 23.

    93. [93]

      He, D.; Yuan, Y.; Liu, B.; Huang, D. Y.; Luo, C. Y.; Lu, F.; Tong, Q. X.; Lee, C. S. Dyes Pigm. 2017, 136, 347.  doi: 10.1016/j.dyepig.2016.08.066

    94. [94]

      Chen, W. C.; Yuan, Y.; Xiong, Y.; Rogach, A. L.; Tong, Q. X.; Lee, C. S. ACS Appl Mater Interfaces. 2017, 9, 26268.  doi: 10.1021/acsami.7b06547

    95. [95]

      Zhang, F.; Li, W.; Wei, D.; Wei, X.; Li, Z.; Zhang, S.; Li, S.; Wei, B.; Cao, G.; Zhai, B. RSC Adv. 2016, 6, 60264.  doi: 10.1039/C6RA04958C

    96. [96]

      Wang, Z.; Feng, Y.; Li, H.; Gao, Z.; Zhang, X.; Lu, P.; Chen, P.; Ma, Y.; Liu, S. Phys. Chem. Chem. Phys. 2014, 16, 10837.  doi: 10.1039/C4CP00209A

    97. [97]

      Wang, Z.; Li, X.; Xue, K.; Li, H.; Zhang, X.; Liu, Y.; Yu, Z. Q.; Lu, P.; Chen, P. J. Mater. Chem. C 2016, 4, 1886.  doi: 10.1039/C5TC04048E

    98. [98]

      Huo, Y. P.; Tan, J. H.; Zhou, P. Q.; Chen, G. W.; Su, S. J.; Cai, X. Y.; CN 108148001, 2018.

  • 加载中
    1. [1]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    2. [2]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

    3. [3]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    4. [4]

      Hong Yan Wenfeng Wang Keyin Ye Yaofeng Yuan . Organic Electrochemistry and Its Integration into Chemistry Teaching. University Chemistry, 2025, 40(5): 301-310. doi: 10.12461/PKU.DXHX202407027

    5. [5]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    6. [6]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    7. [7]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    8. [8]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    9. [9]

      Zhengkun QINZicong PANHui TIANWanyi ZHANGMingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429

    10. [10]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    11. [11]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    12. [12]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    13. [13]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    14. [14]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    15. [15]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    16. [16]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    17. [17]

      Lewang Yuan Yaoyao Peng Zong-Jie Guan Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086

    18. [18]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    19. [19]

      Wei Li Jinfan Xu Yongjun Zhang Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013

    20. [20]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

Metrics
  • PDF Downloads(66)
  • Abstract views(4633)
  • HTML views(1389)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return