Citation: Meng Fankang, Lou Chunbo. Research Progress in Biocontainment of Genetically Modified Organisms[J]. Chinese Journal of Organic Chemistry, ;2018, 38(9): 2231-2242. doi: 10.6023/cjoc201806018 shu

Research Progress in Biocontainment of Genetically Modified Organisms

  • Corresponding author: Lou Chunbo, louchunbo@im.ac.cn
  • Received Date: 13 June 2018
    Revised Date: 8 August 2018
    Available Online: 22 September 2018

    Fund Project: Ministry of Science and Technology of the People's Republic of China 2015CB910300Project supported by the National Natural Science Foundation of China 31722002Project supported by the National Natural Science Foundation of China 31470818Project supported by the National Natural Science Foundation of China (Nos. 31470818, 31722002) and Ministry of Science and Technology of the People's Republic of China (No. 2015CB910300)

Figures(6)

  • With the rapid progress of synthetic biology and other related filed, there is a continuous growth of the applications of genetically modified organisms in many aspects, including industry, agriculture, health and environment. However, unintended release or uncontrolled propagation of these genetically modified organisms may cause significant side effects to the nature ecological environment. In order to eradicate the escaping problem and horizontal gene transfer between artificial and natural organisms, many researches have been focused on how to limit genetically modified organisms to a controlled environment. The research progress of biocontainment of genetically modified organisms mainly from three aspects of traditional biocontainment strategies, the orthogonalization of central dogma and the design of complex genetic networks is highlighted. It is believed that the advanced biocontainment technology would promote the further application of synthetic biology.
  • 加载中
    1. [1]

      Zhang, H. M.; Lou, C. Sci. Soc. 2014, 4, 26(in Chinese).
       

    2. [2]

      (a) Khalil, A. S.; Collins, J. J. Nat. Rev. Genet. 2010, 11, 367.
      (b) Lee, J. W.; Na, D.; Park, J. M.; Lee, J.; Choi, S.; Lee, S. Y. Nat. Chem. Biol. 2012, 8, 536.
      (c) Cameron, D. E.; Bashor, C. J.; Collins, J. J. Nat. Rev. Microbiol. 2014, 12, 381.

    3. [3]

      Redford, K. H.; Adams, W.; Mace, G. M. PLoS Biol. 2013, 11, e1001530.  doi: 10.1371/journal.pbio.1001530

    4. [4]

      Alphey, L.; Alphey, N. PLoS Pathog. 2014, 10, e1003909.  doi: 10.1371/journal.ppat.1003909

    5. [5]

      (a) Carmichael, R. E.; Boyce, A.; Matthewman, C.; Patron, N. J. New Phytol. 2015, 208, 20.
      (b) Patron, N. J.; Orzaez, D.; Marillonnet, S.; Warzecha, H.; Matthewman, C.; Youles, M.; Raitskin, O.; Leveau, A.; Farre, G.; Rogers, C.; Smith, A.; Hibberd, J.; Webb, A. A.; Locke, J.; Schornack, S.; Ajioka, J.; Baulcombe, D. C.; Zipfel, C.; Kamoun, S.; Jones, J. D.; Kuhn, H.; Robatzek, S.; Van Esse, H. P.; Sanders, D.; Oldroyd, G.; Martin, C.; Field, R.; O'Connor, S.; Fox, S.; Wulff, B.; Miller, B.; Breakspear, A.; Radhakrishnan, G.; Delaux, P. M.; Loque, D.; Granell, A.; Tissier, A.; Shih, P.; Brutnell, T. P.; Quick, W. P.; Rischer, H.; Fraser, P. D.; Aharoni, A.; Raines, C.; South, P. F.; Ane, J. M.; Hamberger, B. R.; Langdale, J.; Stougaard, J.; Bouwmeester, H.; Udvardi, M.; Murray, J. A.; Ntoukakis, V.; Schafer, P.; Denby, K.; Edwards, K. J.; Osbourn, A.; Haseloff, J. New Phytol. 2015, 208, 13.

    6. [6]

      Zhang, Y.; Chen, J.; Cui, X.; Luo, D.; Xia, H.; Dai, J.; Zhu, Z.; Hu, W. Sci. Rep. 2015, 5, 7614.  doi: 10.1038/srep07614

    7. [7]

      (a) Alphey, L. Annu. Rev. Entomol. 2014, 59, 205.
      (b) Gantz, V. M.; Jasinskiene, N.; Tatarenkova, O.; Fazekas, A.; Macias, V. M.; Bier, E.; James, A. A. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, E6736.
      (c) Harris, A. F.; Nimmo, D.; McKemey, A. R.; Kelly, N.; Scaife, S.; Donnelly, C. A.; Beech, C.; Petrie, W. D.; Alphey, L. Nat. Biotechnol. 2011, 29, 1034.
      (d) Hammond, A.; Galizi, R.; Kyrou, K.; Simoni, A.; Siniscalchi, C.; Katsanos, D.; Gribble, M.; Baker, D.; Marois, E.; Russell, S.; Burt, A.; Windbichler, N.; Crisanti, A.; Nolan, T. Nat. Biotechnol. 2016, 34, 78.
      (e) Lacroix, R.; McKemey, A. R.; Raduan, N.; Kwee Wee, L.; Hong Ming, W.; Guat Ney, T.; Rahidah, A. A. S.; Salman, S.; Subramaniam, S.; Nordin, O.; Hanum, A. T. N.; Angamuthu, C.; Marlina Mansor, S.; Lees, R. S.; Naish, N.; Scaife, S.; Gray, P.; Labbe, G.; Beech, C.; Nimmo, D.; Alphey, L.; Vasan, S. S.; Han Lim, L.; Wasi, A. N.; Murad, S. PLoS One 2012, 7, e42771.

    8. [8]

      (a) Rovner, A. J.; Haimovich, A. D.; Katz, S. R.; Li, Z.; Grome, M. W.; Gassaway, B. M.; Amiram, M.; Patel, J. R.; Gallagher, R. R.; Rinehart, J.; Isaacs, F. J. Nature 2015, 527.
      (b) Mandell, D. J.; Lajoie, M. J.; Mee, M. T.; Takeuchi, R.; Kuznetsov, G.; Norville, J. E.; Gregg, C. J.; Stoddard, B. L.; Church, G. M. Nature 2015, 518, 55.
      (c) Lajoie, M. J.; Rovner, A. J.; Goodman, D. B.; Aerni, H. R.; Haimovich, A. D.; Kuznetsov, G.; Mercer, J. A.; Wang, H. H.; Carr, P. A.; Mosberg, J. A.; Rohland, N.; Schultz, P. G.; Jacobson, J. M.; Rinehart, J.; Church, G. M.; Isaacs, F. J. Science 2013, 342, 357.

    9. [9]

      (a) Marlière, P.; Patrouix, J.; Döring, V.; Herdewijn, P.; Tricot, S.; Cruveiller, S.; Bouzon, M.; Mutzel, R. Angew. Chem., Int. Ed. 2011, 50, 7109.
      (b) Pezo, V.; Liu, F. W.; Abramov, M.; Froeyen, M.; Herdewijn, P.; Marliere, P. Angew. Chem., Int. Ed. 2013, 52, 8139.
      (c) Malyshev, D. A.; Dhami, K.; Lavergne, T.; Chen, T.; Dai, N.; Foster, J. M.; Corrêa, I. R.; Romesberg, F. E. Nature 2014, 509, 385.
      (d) Malyshev, D. A.; Dhami, K.; Lavergne, T.; Chen, T.; Dai, N.; Foster, J. M.; Correa, I. R., Jr.; Romesberg, F. E. Nature 2014, 509, 385.

    10. [10]

      (a) de Lorenzo, V. In Handbook of Hydrocarbon and Lipid Microbiologyed, Springer, Berlin, Heidelberg, 2010, p. 2435.
      (b) Solé, R. V.; Montañez, R.; Duran-Nebreda, S. Biology Direct 2015, 10, 37.

    11. [11]

      Landrain, T.; Meyer, M.; Perez, A. M.; Sussan, R. Syst. Synth. Biol. 2013, 7, 115.  doi: 10.1007/s11693-013-9116-4

    12. [12]

      Berg, P.; Baltimore, D.; Brenner, S.; Roblin, R. O.; Singer, M. F. Science 1975, 188, 991.  doi: 10.1126/science.1056638

    13. [13]

      Dana, G. V.; Kuiken, T.; Rejeski, D.; Snow, A. A. Nature 2012, 483, 29.  doi: 10.1038/483029a

    14. [14]

      Wilson, D. J. Acc. Res. 1993, 3, 177.  doi: 10.1080/08989629308573848

    15. [15]

      (a) Wang, Z.; Xu, W.; Liu, L.; Zhu, T. F. Nat. Chem. 2016, 8, 698;
      (b) Steidler, L.; Neirynck, S.; Huyghebaert, N.; Snoeck, V.; Ver- meire, A.; Goddeeris, B.; Cox, E.; Remon, J. P.; Remaut, E. Nat. Biotechnol. 2003, 21, 785;
      (c) Cohen, S. S.; Barner, H. D. J. Biol. Chem. 1957, 226, 631.

    16. [16]

      Curtiss, R.; Inoue, M.; Pereira, D.; Hsu, J. C.; Alexander, L.; Rock, L. In Molecular of Cloning of Recombinant DNA, Elsevier, Amsterdam, Netherlands, 1977, p. 99.

    17. [17]

      Steidler, L.; Neirynck, S.; Huyghebaert, N.; Snoeck, V.; Vermeire, A.; Goddeeris, B.; Cox, E.; Remon, J. P.; Remaut, E. Nat. Biotechnol. 2003, 21, 785.  doi: 10.1038/nbt840

    18. [18]

      Nguyen, L. V.; Cox, K. M.; Ke, J. S.; Peele, C. G.; Dickey, L. F. Transgenic Res. 2012, 21, 1071.  doi: 10.1007/s11248-012-9594-2

    19. [19]

      Hirota, R.; Abe, K.; Katsuura, Z.; Noguchi, R.; Moribe, S.; Motomura, K.; Ishida, T.; Alexandrov, M.; Funabashi, H.; Ikeda, T.; Kuroda, A. Sci. Rep.-Uk 2017, 7.

    20. [20]

      Molin, S.; Klemm, P.; Poulsen, L. K.; Biehl, H.; Gerdes, K.; Andersson, P. Bio-Technology 1987, 5, 1315.

    21. [21]

      Contreras, A.; Molin, S.; Ramos, J. L. Appl. Environ. Microb. 1991, 57, 1504.
       

    22. [22]

      Szafranski, P.; Mello, C. M.; Sano, T.; Smith, C. L.; Kaplan, D. L.; Cantor, C. R. Proc. Natl. Acad. Sci. U. S. A. 1997, 94, 1059.  doi: 10.1073/pnas.94.4.1059

    23. [23]

      Ronchel, M. C.; Ramos, J. L. Appl. Environ. Microbiol. 2001, 67, 2649.  doi: 10.1128/AEM.67.6.2649-2656.2001

    24. [24]

      Oliver, M. J.; Quisenberry, J. E.; Trolinder, N. L. G.; Keim, D. L. Google Patents 1998.
       

    25. [25]

      Heuer, H.; Smalla, K. Environ. Biosaf. Res. 2007, 6, 3.  doi: 10.1051/ebr:2007034

    26. [26]

      Lyon, D. Y.; Monier, J. M.; Dupraz, S.; Freissinet, C.; Simonet, P.; Vogel, T. M. Astrobiology 2010, 10, 285.  doi: 10.1089/ast.2009.0359

    27. [27]

      Torres, B.; Jaenecke, S.; Timmis, K. N.; Garcia, J. L.; Diaz, E. Environ. Microbiol. 2000, 2, 555.  doi: 10.1046/j.1462-2920.2000.00138.x

    28. [28]

      Caliando, B. J.; Voigt, C. A. Nat. Commun. 2015, 6.

    29. [29]

      Wright, O.; Delmans, M.; Stan, G.-B.; Ellis, T. ACS Synth. Biol. 2014, 4, 307.

    30. [30]

      Schmidt, M.; de Lorenzo, V. FEBS Lett. 2012, 586, 2199.  doi: 10.1016/j.febslet.2012.02.022

    31. [31]

      Liu, C. C.; Schultz, P. G. Annu. Rev. Biochem. 2010, 79, 413.  doi: 10.1146/annurev.biochem.052308.105824

    32. [32]

      Wang, L.; Brock, A.; Herberich, B.; Schultz, P. G. Science 2001, 292, 498.  doi: 10.1126/science.1060077

    33. [33]

      Chin, J. W.; Cropp, T. A.; Anderson, J. C.; Mukherji, M.; Zhang, Z. W.; Schultz, P. G. Science 2003, 301, 964.  doi: 10.1126/science.1084772

    34. [34]

      Wang, H. H.; Isaacs, F. J.; Carr, P. A.; Sun, Z. Z.; Xu, G.; Forest, C. R.; Church, G. M. Nature 2009, 460, 894.  doi: 10.1038/nature08187

    35. [35]

      Isaacs, F. J.; Carr, P. A.; Wang, H. H.; Lajoie, M. J.; Sterling, B.; Kraal, L.; Tolonen, A. C.; Gianoulis, T. A.; Goodman, D. B.; Reppas, N. B.; Emig, C. J.; Bang, D.; Hwang, S. J.; Jewett, M. C.; Jacobson, J. M.; Church, G. M. Science 2011, 333, 348.  doi: 10.1126/science.1205822

    36. [36]

      Ostrov, N.; Landon, M.; Guell, M.; Kuznetsov, G.; Teramoto, J.; Cervantes, N.; Zhou, M.; Singh, K.; Napolitano, M. G.; Moos-burner, M.; Shrock, E.; Pruitt, B. W.; Conway, N.; Goodman, D. B.; Gardner, C. L.; Tyree, G.; Gonzales, A.; Wanner, B. L.; Norville, J. E.; Lajoie, M. J.; Church, G. M. Science 2016, 353, 819.  doi: 10.1126/science.aaf3639

    37. [37]

      (a) Wang, K.; Schmied, W. H.; Chin, J. W. Angew. Chem., Int. Ed. 2012, 51, 2288;
      (b) Niu, W.; Schultz, P. G.; Guo, J. ACS Chem. Biol. 2013, 8, 1640;
      (c) Anderson, J. C.; Wu, N.; Santoro, S. W.; Lakshman, V.; King, D. S.; Schultz, P. G. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 7566.

    38. [38]

      Tack, D. S.; Ellefson, J. W.; Thyer, R.; Wang, B.; Gollihar, J.; Forster, M. T.; Ellington, A. D. Nat. Chem. Biol. 2016, 12, 138.  doi: 10.1038/nchembio.2002

    39. [39]

      Wang, N. X.; Li, Y.; Niu, W.; Sun, M.; Cerny, R.; Li, Q. S.; Guo, J. T. Angew. Chem., Int. Ed. 2014, 53, 4867.  doi: 10.1002/anie.201402092

    40. [40]

      Si, L. L.; Xu, H.; Zhou, X. Y.; Zhang, Z. W.; Tian, Z. Y.; Wang, Y.; Wu, Y. M.; Zhang, B.; Niu, Z. L.; Zhang, C. L.; Fu, G.; Xiao, S. L.; Xia, Q.; Zhang, L. H.; Zhou, D. M. Science 2016, 354, 1170.  doi: 10.1126/science.aah5869

    41. [41]

      Kimoto, M.; Kawai, R.; Mitsui, T.; Yokoyama, S.; Hirao, I. Nucleic Acids Res. 2009, 37.
       

    42. [42]

      Yang, Z. Y.; Hutter, D.; Sheng, P. P.; Sismour, A. M.; Benner, S. A. Nucleic Acids Res. 2006, 34, 6095.  doi: 10.1093/nar/gkl633

    43. [43]

      Yang, Z. Y.; Chen, F.; Alvarado, J. B.; Benner, S. A. J. Am. Chem. Soc. 2011, 133, 15105.  doi: 10.1021/ja204910n

    44. [44]

      Kim, H. J.; Leal, N. A.; Hoshika, S.; Benner, S. A. J. Org. Chem. 2014, 79, 3194.  doi: 10.1021/jo402665d

    45. [45]

      Leconte, A. M.; Hwang, G. T.; Matsuda, S.; Capek, P.; Hari, Y.; Romesberg, F. E. J. Am. Chem. Soc. 2008, 130, 2336.  doi: 10.1021/ja078223d

    46. [46]

      Seo, Y. J.; Hwang, G. T.; Ordoukhanian, P.; Romesberg, F. E. J. Am. Chem. Soc. 2009, 131, 14596.  doi: 10.1021/ja907027a

    47. [47]

      Malyshev, D. A.; Dhami, K.; Lavergne, T.; Chen, T. J.; Dai, N.; Foster, J. M.; Correa, I. R.; Romesberg, F. E. Nature 2014, 509, 385.  doi: 10.1038/nature13314

    48. [48]

      Zhang, Y.; Ptacin, J. L.; Fischer, E. C.; Aerni, H. R.; Caffaro, C. E.; Jose, K. S.; Feldman, A. W.; Turner, C. R.; Romesberg, F. E. Nature 2017, 551, 644.  doi: 10.1038/nature24659

    49. [49]

      Zhang, Y.; Lamb, B. M.; Feldman, A. W.; Zhou, A. X.; Lavergne, T.; Li, L.; Romesberg, F. E. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 1317.  doi: 10.1073/pnas.1616443114

    50. [50]

      Lopez, G.; Anderson, J. C. ACS Synth. Biol. 2015, 4, 1279.  doi: 10.1021/acssynbio.5b00085

    51. [51]

      Ravikumar, A.; Arrieta, A.; Liu, C. C. Nat. Chem. Biol. 2014, 10, 175.  doi: 10.1038/nchembio.1439

    52. [52]

      Basu, R. S.; Murakami, K. S., In Nucleic Acid Polymerasesed, Springer, Berlin, Heidelberg, 2014, p. 237.

    53. [53]

      Rackham, O.; Chin, J. W. Nat. Chem. Biol. 2005, 1, 159.  doi: 10.1038/nchembio719

    54. [54]

      Chubiz, L. M.; Rao, C. V. Nucleic Acids Res. 2008, 36, 4038.  doi: 10.1093/nar/gkn354

    55. [55]

      An, W.; Chin, J. W. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 8477.  doi: 10.1073/pnas.0900267106

    56. [56]

      Orelle, C.; Carlson, E. D.; Szal, T.; Florin, T.; Jewett, M. C.; Mankin, A. S. Nature 2015, 524, 119.  doi: 10.1038/nature14862

    57. [57]

      Jia, B.; Qi, H.; Li, B. Z.; Pan, S.; Liu, D.; Liu, H.; Cai, Y.; Yuan, Y. J. ACS Synth. Biol. 2017, 6, 2108.  doi: 10.1021/acssynbio.7b00148

    58. [58]

      Wang, Z.; Xu, W.; Liu, L.; Zhu, T. F. Nat. Chem. 2016, 8, 698.  doi: 10.1038/nchem.2517

    59. [59]

      Knudsen, S. M.; Karlstrom, O. H. Appl. Environ. Microb. 1991, 57, 85.

    60. [60]

      Bej, A. K.; Perlin, M. H.; Atlas, R. M. Appl. Environ. Microbiol. 1988, 54, 2472.
       

    61. [61]

      Chan, C. T.; Lee, J. W.; Cameron, D. E.; Bashor, C. J.; Collins, J. J. Nat. Chem. Biol. 2016, 12, 82.  doi: 10.1038/nchembio.1979

    62. [62]

      Gallagher, R. R.; Patel, J. R.; Interiano, A. L.; Rovner, A. J.; Isaacs, F. J. Nucl. Acids Res. 2015, 43, 1945.  doi: 10.1093/nar/gku1378

    63. [63]

      Cai, Y.; Agmon, N.; Choi, W. J.; Ubide, A.; Stracquadanio, G.; Caravelli, K.; Hao, H.; Bader, J. S.; Boeke, J. D. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 1803.  doi: 10.1073/pnas.1424704112

    64. [64]

      Schmidt, M.; Pei, L. Toxicol. Sci. 2010, 120, S204.

  • 加载中
    1. [1]

      Yang Liu Peng Chen Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085

    2. [2]

      Tianyu Feng Guifang Jia Peng Zou Jun Huang Zhanxia Lü Zhen Gao Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002

    3. [3]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    4. [4]

      Ying Zhang Fang Ge Zhimin Luo . AI-Driven Biochemical Teaching Research: Predicting the Functional Effects of Gene Mutations. University Chemistry, 2025, 40(3): 277-284. doi: 10.12461/PKU.DXHX202412104

    5. [5]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    6. [6]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    7. [7]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    8. [8]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    9. [9]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    10. [10]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    11. [11]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    12. [12]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    13. [13]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    14. [14]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    15. [15]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    16. [16]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    17. [17]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    18. [18]

      Dongxia Zhang Sijia Hao Jiarui Wang Jiwei Wang Xiaogang Dong Liang Jiao . Construction and Reflection on the Safety Management of Hazardous Chemicals in University Laboratories. University Chemistry, 2024, 39(10): 229-235. doi: 10.12461/PKU.DXHX202403078

    19. [19]

      Qiying Xia Guokui Liu Yunzhi Li Yaoyao Wei Xia Leng Guangli Zhou Aixiang Wang Congcong Mi Dengxue Ma . Construction and Practice of “Teaching-Learning-Assessment Integration” Model Based on Outcome Orientation: Taking “Structural Chemistry” as an Example. University Chemistry, 2024, 39(10): 361-368. doi: 10.3866/PKU.DXHX202311007

    20. [20]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

Metrics
  • PDF Downloads(67)
  • Abstract views(2600)
  • HTML views(585)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return