Research Progress in Biocontainment of Genetically Modified Organisms
- Corresponding author: Lou Chunbo, louchunbo@im.ac.cn
Citation:
Meng Fankang, Lou Chunbo. Research Progress in Biocontainment of Genetically Modified Organisms[J]. Chinese Journal of Organic Chemistry,
;2018, 38(9): 2231-2242.
doi:
10.6023/cjoc201806018
(a) Khalil, A. S.; Collins, J. J. Nat. Rev. Genet. 2010, 11, 367.
(b) Lee, J. W.; Na, D.; Park, J. M.; Lee, J.; Choi, S.; Lee, S. Y. Nat. Chem. Biol. 2012, 8, 536.
(c) Cameron, D. E.; Bashor, C. J.; Collins, J. J. Nat. Rev. Microbiol. 2014, 12, 381.
Redford, K. H.; Adams, W.; Mace, G. M. PLoS Biol. 2013, 11, e1001530.
doi: 10.1371/journal.pbio.1001530
Alphey, L.; Alphey, N. PLoS Pathog. 2014, 10, e1003909.
doi: 10.1371/journal.ppat.1003909
(a) Carmichael, R. E.; Boyce, A.; Matthewman, C.; Patron, N. J. New Phytol. 2015, 208, 20.
(b) Patron, N. J.; Orzaez, D.; Marillonnet, S.; Warzecha, H.; Matthewman, C.; Youles, M.; Raitskin, O.; Leveau, A.; Farre, G.; Rogers, C.; Smith, A.; Hibberd, J.; Webb, A. A.; Locke, J.; Schornack, S.; Ajioka, J.; Baulcombe, D. C.; Zipfel, C.; Kamoun, S.; Jones, J. D.; Kuhn, H.; Robatzek, S.; Van Esse, H. P.; Sanders, D.; Oldroyd, G.; Martin, C.; Field, R.; O'Connor, S.; Fox, S.; Wulff, B.; Miller, B.; Breakspear, A.; Radhakrishnan, G.; Delaux, P. M.; Loque, D.; Granell, A.; Tissier, A.; Shih, P.; Brutnell, T. P.; Quick, W. P.; Rischer, H.; Fraser, P. D.; Aharoni, A.; Raines, C.; South, P. F.; Ane, J. M.; Hamberger, B. R.; Langdale, J.; Stougaard, J.; Bouwmeester, H.; Udvardi, M.; Murray, J. A.; Ntoukakis, V.; Schafer, P.; Denby, K.; Edwards, K. J.; Osbourn, A.; Haseloff, J. New Phytol. 2015, 208, 13.
Zhang, Y.; Chen, J.; Cui, X.; Luo, D.; Xia, H.; Dai, J.; Zhu, Z.; Hu, W. Sci. Rep. 2015, 5, 7614.
doi: 10.1038/srep07614
(a) Alphey, L. Annu. Rev. Entomol. 2014, 59, 205.
(b) Gantz, V. M.; Jasinskiene, N.; Tatarenkova, O.; Fazekas, A.; Macias, V. M.; Bier, E.; James, A. A. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, E6736.
(c) Harris, A. F.; Nimmo, D.; McKemey, A. R.; Kelly, N.; Scaife, S.; Donnelly, C. A.; Beech, C.; Petrie, W. D.; Alphey, L. Nat. Biotechnol. 2011, 29, 1034.
(d) Hammond, A.; Galizi, R.; Kyrou, K.; Simoni, A.; Siniscalchi, C.; Katsanos, D.; Gribble, M.; Baker, D.; Marois, E.; Russell, S.; Burt, A.; Windbichler, N.; Crisanti, A.; Nolan, T. Nat. Biotechnol. 2016, 34, 78.
(e) Lacroix, R.; McKemey, A. R.; Raduan, N.; Kwee Wee, L.; Hong Ming, W.; Guat Ney, T.; Rahidah, A. A. S.; Salman, S.; Subramaniam, S.; Nordin, O.; Hanum, A. T. N.; Angamuthu, C.; Marlina Mansor, S.; Lees, R. S.; Naish, N.; Scaife, S.; Gray, P.; Labbe, G.; Beech, C.; Nimmo, D.; Alphey, L.; Vasan, S. S.; Han Lim, L.; Wasi, A. N.; Murad, S. PLoS One 2012, 7, e42771.
(a) Rovner, A. J.; Haimovich, A. D.; Katz, S. R.; Li, Z.; Grome, M. W.; Gassaway, B. M.; Amiram, M.; Patel, J. R.; Gallagher, R. R.; Rinehart, J.; Isaacs, F. J. Nature 2015, 527.
(b) Mandell, D. J.; Lajoie, M. J.; Mee, M. T.; Takeuchi, R.; Kuznetsov, G.; Norville, J. E.; Gregg, C. J.; Stoddard, B. L.; Church, G. M. Nature 2015, 518, 55.
(c) Lajoie, M. J.; Rovner, A. J.; Goodman, D. B.; Aerni, H. R.; Haimovich, A. D.; Kuznetsov, G.; Mercer, J. A.; Wang, H. H.; Carr, P. A.; Mosberg, J. A.; Rohland, N.; Schultz, P. G.; Jacobson, J. M.; Rinehart, J.; Church, G. M.; Isaacs, F. J. Science 2013, 342, 357.
(a) Marlière, P.; Patrouix, J.; Döring, V.; Herdewijn, P.; Tricot, S.; Cruveiller, S.; Bouzon, M.; Mutzel, R. Angew. Chem., Int. Ed. 2011, 50, 7109.
(b) Pezo, V.; Liu, F. W.; Abramov, M.; Froeyen, M.; Herdewijn, P.; Marliere, P. Angew. Chem., Int. Ed. 2013, 52, 8139.
(c) Malyshev, D. A.; Dhami, K.; Lavergne, T.; Chen, T.; Dai, N.; Foster, J. M.; Corrêa, I. R.; Romesberg, F. E. Nature 2014, 509, 385.
(d) Malyshev, D. A.; Dhami, K.; Lavergne, T.; Chen, T.; Dai, N.; Foster, J. M.; Correa, I. R., Jr.; Romesberg, F. E. Nature 2014, 509, 385.
(a) de Lorenzo, V. In Handbook of Hydrocarbon and Lipid Microbiologyed, Springer, Berlin, Heidelberg, 2010, p. 2435.
(b) Solé, R. V.; Montañez, R.; Duran-Nebreda, S. Biology Direct 2015, 10, 37.
Landrain, T.; Meyer, M.; Perez, A. M.; Sussan, R. Syst. Synth. Biol. 2013, 7, 115.
doi: 10.1007/s11693-013-9116-4
Berg, P.; Baltimore, D.; Brenner, S.; Roblin, R. O.; Singer, M. F. Science 1975, 188, 991.
doi: 10.1126/science.1056638
Dana, G. V.; Kuiken, T.; Rejeski, D.; Snow, A. A. Nature 2012, 483, 29.
doi: 10.1038/483029a
Wilson, D. J. Acc. Res. 1993, 3, 177.
doi: 10.1080/08989629308573848
(a) Wang, Z.; Xu, W.; Liu, L.; Zhu, T. F. Nat. Chem. 2016, 8, 698;
(b) Steidler, L.; Neirynck, S.; Huyghebaert, N.; Snoeck, V.; Ver- meire, A.; Goddeeris, B.; Cox, E.; Remon, J. P.; Remaut, E. Nat. Biotechnol. 2003, 21, 785;
(c) Cohen, S. S.; Barner, H. D. J. Biol. Chem. 1957, 226, 631.
Curtiss, R.; Inoue, M.; Pereira, D.; Hsu, J. C.; Alexander, L.; Rock, L. In Molecular of Cloning of Recombinant DNA, Elsevier, Amsterdam, Netherlands, 1977, p. 99.
Steidler, L.; Neirynck, S.; Huyghebaert, N.; Snoeck, V.; Vermeire, A.; Goddeeris, B.; Cox, E.; Remon, J. P.; Remaut, E. Nat. Biotechnol. 2003, 21, 785.
doi: 10.1038/nbt840
Nguyen, L. V.; Cox, K. M.; Ke, J. S.; Peele, C. G.; Dickey, L. F. Transgenic Res. 2012, 21, 1071.
doi: 10.1007/s11248-012-9594-2
Hirota, R.; Abe, K.; Katsuura, Z.; Noguchi, R.; Moribe, S.; Motomura, K.; Ishida, T.; Alexandrov, M.; Funabashi, H.; Ikeda, T.; Kuroda, A. Sci. Rep.-Uk 2017, 7.
Molin, S.; Klemm, P.; Poulsen, L. K.; Biehl, H.; Gerdes, K.; Andersson, P. Bio-Technology 1987, 5, 1315.
Contreras, A.; Molin, S.; Ramos, J. L. Appl. Environ. Microb. 1991, 57, 1504.
Szafranski, P.; Mello, C. M.; Sano, T.; Smith, C. L.; Kaplan, D. L.; Cantor, C. R. Proc. Natl. Acad. Sci. U. S. A. 1997, 94, 1059.
doi: 10.1073/pnas.94.4.1059
Ronchel, M. C.; Ramos, J. L. Appl. Environ. Microbiol. 2001, 67, 2649.
doi: 10.1128/AEM.67.6.2649-2656.2001
Oliver, M. J.; Quisenberry, J. E.; Trolinder, N. L. G.; Keim, D. L. Google Patents 1998.
Heuer, H.; Smalla, K. Environ. Biosaf. Res. 2007, 6, 3.
doi: 10.1051/ebr:2007034
Lyon, D. Y.; Monier, J. M.; Dupraz, S.; Freissinet, C.; Simonet, P.; Vogel, T. M. Astrobiology 2010, 10, 285.
doi: 10.1089/ast.2009.0359
Torres, B.; Jaenecke, S.; Timmis, K. N.; Garcia, J. L.; Diaz, E. Environ. Microbiol. 2000, 2, 555.
doi: 10.1046/j.1462-2920.2000.00138.x
Caliando, B. J.; Voigt, C. A. Nat. Commun. 2015, 6.
Wright, O.; Delmans, M.; Stan, G.-B.; Ellis, T. ACS Synth. Biol. 2014, 4, 307.
Schmidt, M.; de Lorenzo, V. FEBS Lett. 2012, 586, 2199.
doi: 10.1016/j.febslet.2012.02.022
Liu, C. C.; Schultz, P. G. Annu. Rev. Biochem. 2010, 79, 413.
doi: 10.1146/annurev.biochem.052308.105824
Wang, L.; Brock, A.; Herberich, B.; Schultz, P. G. Science 2001, 292, 498.
doi: 10.1126/science.1060077
Chin, J. W.; Cropp, T. A.; Anderson, J. C.; Mukherji, M.; Zhang, Z. W.; Schultz, P. G. Science 2003, 301, 964.
doi: 10.1126/science.1084772
Wang, H. H.; Isaacs, F. J.; Carr, P. A.; Sun, Z. Z.; Xu, G.; Forest, C. R.; Church, G. M. Nature 2009, 460, 894.
doi: 10.1038/nature08187
Isaacs, F. J.; Carr, P. A.; Wang, H. H.; Lajoie, M. J.; Sterling, B.; Kraal, L.; Tolonen, A. C.; Gianoulis, T. A.; Goodman, D. B.; Reppas, N. B.; Emig, C. J.; Bang, D.; Hwang, S. J.; Jewett, M. C.; Jacobson, J. M.; Church, G. M. Science 2011, 333, 348.
doi: 10.1126/science.1205822
Ostrov, N.; Landon, M.; Guell, M.; Kuznetsov, G.; Teramoto, J.; Cervantes, N.; Zhou, M.; Singh, K.; Napolitano, M. G.; Moos-burner, M.; Shrock, E.; Pruitt, B. W.; Conway, N.; Goodman, D. B.; Gardner, C. L.; Tyree, G.; Gonzales, A.; Wanner, B. L.; Norville, J. E.; Lajoie, M. J.; Church, G. M. Science 2016, 353, 819.
doi: 10.1126/science.aaf3639
(a) Wang, K.; Schmied, W. H.; Chin, J. W. Angew. Chem., Int. Ed. 2012, 51, 2288;
(b) Niu, W.; Schultz, P. G.; Guo, J. ACS Chem. Biol. 2013, 8, 1640;
(c) Anderson, J. C.; Wu, N.; Santoro, S. W.; Lakshman, V.; King, D. S.; Schultz, P. G. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 7566.
Tack, D. S.; Ellefson, J. W.; Thyer, R.; Wang, B.; Gollihar, J.; Forster, M. T.; Ellington, A. D. Nat. Chem. Biol. 2016, 12, 138.
doi: 10.1038/nchembio.2002
Wang, N. X.; Li, Y.; Niu, W.; Sun, M.; Cerny, R.; Li, Q. S.; Guo, J. T. Angew. Chem., Int. Ed. 2014, 53, 4867.
doi: 10.1002/anie.201402092
Si, L. L.; Xu, H.; Zhou, X. Y.; Zhang, Z. W.; Tian, Z. Y.; Wang, Y.; Wu, Y. M.; Zhang, B.; Niu, Z. L.; Zhang, C. L.; Fu, G.; Xiao, S. L.; Xia, Q.; Zhang, L. H.; Zhou, D. M. Science 2016, 354, 1170.
doi: 10.1126/science.aah5869
Kimoto, M.; Kawai, R.; Mitsui, T.; Yokoyama, S.; Hirao, I. Nucleic Acids Res. 2009, 37.
Yang, Z. Y.; Hutter, D.; Sheng, P. P.; Sismour, A. M.; Benner, S. A. Nucleic Acids Res. 2006, 34, 6095.
doi: 10.1093/nar/gkl633
Yang, Z. Y.; Chen, F.; Alvarado, J. B.; Benner, S. A. J. Am. Chem. Soc. 2011, 133, 15105.
doi: 10.1021/ja204910n
Kim, H. J.; Leal, N. A.; Hoshika, S.; Benner, S. A. J. Org. Chem. 2014, 79, 3194.
doi: 10.1021/jo402665d
Leconte, A. M.; Hwang, G. T.; Matsuda, S.; Capek, P.; Hari, Y.; Romesberg, F. E. J. Am. Chem. Soc. 2008, 130, 2336.
doi: 10.1021/ja078223d
Seo, Y. J.; Hwang, G. T.; Ordoukhanian, P.; Romesberg, F. E. J. Am. Chem. Soc. 2009, 131, 14596.
doi: 10.1021/ja907027a
Malyshev, D. A.; Dhami, K.; Lavergne, T.; Chen, T. J.; Dai, N.; Foster, J. M.; Correa, I. R.; Romesberg, F. E. Nature 2014, 509, 385.
doi: 10.1038/nature13314
Zhang, Y.; Ptacin, J. L.; Fischer, E. C.; Aerni, H. R.; Caffaro, C. E.; Jose, K. S.; Feldman, A. W.; Turner, C. R.; Romesberg, F. E. Nature 2017, 551, 644.
doi: 10.1038/nature24659
Zhang, Y.; Lamb, B. M.; Feldman, A. W.; Zhou, A. X.; Lavergne, T.; Li, L.; Romesberg, F. E. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 1317.
doi: 10.1073/pnas.1616443114
Lopez, G.; Anderson, J. C. ACS Synth. Biol. 2015, 4, 1279.
doi: 10.1021/acssynbio.5b00085
Ravikumar, A.; Arrieta, A.; Liu, C. C. Nat. Chem. Biol. 2014, 10, 175.
doi: 10.1038/nchembio.1439
Basu, R. S.; Murakami, K. S., In Nucleic Acid Polymerasesed, Springer, Berlin, Heidelberg, 2014, p. 237.
Rackham, O.; Chin, J. W. Nat. Chem. Biol. 2005, 1, 159.
doi: 10.1038/nchembio719
Chubiz, L. M.; Rao, C. V. Nucleic Acids Res. 2008, 36, 4038.
doi: 10.1093/nar/gkn354
An, W.; Chin, J. W. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 8477.
doi: 10.1073/pnas.0900267106
Orelle, C.; Carlson, E. D.; Szal, T.; Florin, T.; Jewett, M. C.; Mankin, A. S. Nature 2015, 524, 119.
doi: 10.1038/nature14862
Jia, B.; Qi, H.; Li, B. Z.; Pan, S.; Liu, D.; Liu, H.; Cai, Y.; Yuan, Y. J. ACS Synth. Biol. 2017, 6, 2108.
doi: 10.1021/acssynbio.7b00148
Wang, Z.; Xu, W.; Liu, L.; Zhu, T. F. Nat. Chem. 2016, 8, 698.
doi: 10.1038/nchem.2517
Knudsen, S. M.; Karlstrom, O. H. Appl. Environ. Microb. 1991, 57, 85.
Bej, A. K.; Perlin, M. H.; Atlas, R. M. Appl. Environ. Microbiol. 1988, 54, 2472.
Chan, C. T.; Lee, J. W.; Cameron, D. E.; Bashor, C. J.; Collins, J. J. Nat. Chem. Biol. 2016, 12, 82.
doi: 10.1038/nchembio.1979
Gallagher, R. R.; Patel, J. R.; Interiano, A. L.; Rovner, A. J.; Isaacs, F. J. Nucl. Acids Res. 2015, 43, 1945.
doi: 10.1093/nar/gku1378
Cai, Y.; Agmon, N.; Choi, W. J.; Ubide, A.; Stracquadanio, G.; Caravelli, K.; Hao, H.; Bader, J. S.; Boeke, J. D. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 1803.
doi: 10.1073/pnas.1424704112
Schmidt, M.; Pei, L. Toxicol. Sci. 2010, 120, S204.
Yang Liu , Peng Chen , Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085
Tianyu Feng , Guifang Jia , Peng Zou , Jun Huang , Zhanxia Lü , Zhen Gao , Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002
Xinyi Hong , Tailing Xue , Zhou Xu , Enrong Xie , Mingkai Wu , Qingqing Wang , Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010
Ying Zhang , Fang Ge , Zhimin Luo . AI-Driven Biochemical Teaching Research: Predicting the Functional Effects of Gene Mutations. University Chemistry, 2025, 40(3): 277-284. doi: 10.12461/PKU.DXHX202412104
. . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.
Yonghui ZHOU , Rujun HUANG , Dongchao YAO , Aiwei ZHANG , Yuhang SUN , Zhujun CHEN , Baisong ZHU , Youxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373
Wei HE , Jing XI , Tianpei HE , Na CHEN , Quan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364
Zhongyan Cao , Shengnan Jin , Yuxia Wang , Yiyi Chen , Xianqiang Kong , Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186
Yurong Tang , Yunren Shi , Yi Xu , Bo Qin , Yanqin Xu , Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087
Haitang WANG , Yanni LING , Xiaqing MA , Yuxin CHEN , Rui ZHANG , Keyi WANG , Ying ZHANG , Wenmin WANG . Construction, crystal structures, and biological activities of two LnⅢ3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188
Xiaowei TANG , Shiquan XIAO , Jingwen SUN , Yu ZHU , Xiaoting CHEN , Haiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173
Jianfeng Yan , Yating Xiao , Xin Zuo , Caixia Lin , Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005
Zhibei Qu , Changxin Wang , Lei Li , Jiaze Li , Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
Zhaoxin LI , Ruibo WEI , Min ZHANG , Zefeng WANG , Jing ZHENG , Jianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235
Jinghan ZHANG , Guanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249
Lina Feng , Guoyu Jiang , Xiaoxia Jian , Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171
Dongxia Zhang , Sijia Hao , Jiarui Wang , Jiwei Wang , Xiaogang Dong , Liang Jiao . Construction and Reflection on the Safety Management of Hazardous Chemicals in University Laboratories. University Chemistry, 2024, 39(10): 229-235. doi: 10.12461/PKU.DXHX202403078
Qiying Xia , Guokui Liu , Yunzhi Li , Yaoyao Wei , Xia Leng , Guangli Zhou , Aixiang Wang , Congcong Mi , Dengxue Ma . Construction and Practice of “Teaching-Learning-Assessment Integration” Model Based on Outcome Orientation: Taking “Structural Chemistry” as an Example. University Chemistry, 2024, 39(10): 361-368. doi: 10.3866/PKU.DXHX202311007
Qiaoqiao BAI , Anqi ZHOU , Xiaowei LI , Tang LIU , Song LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128
(A) Auxotroph; (B) simple kill switches; (C) inducible gene switch to control essential gene; (D) gene flow barrier
(A) Schematic of the engineered P metabolic pathway for biocontainment; (B) concept for the biocontainment strategy using engineered dependency on Pt/HPt
(A) The central dogma applies to most living organisms. Genetic information is stored by DNA replication, decoded into functional proteins by a transcription-translation process, and ultimately guides the life process; (B) the orthogonalization of central dogma includes two aspects, the introduction of non-natural chemicals into nucleic acids and proteins, and the orthogonalization of macromolecular machines
(A) Unnatural amino acid; (B) unnatural nucleotide; (C) synthetic ligand
(A) Orthogonal DNA polymerases; (B) orthogonal RNA polymerases; (C) orthogonal ribosomes and orthogonal mRNA translation system; (D) Ribo-T; (E) mirror genetic system
(A) Deadman; (B) passcode; (C) geneGuard; (D) biocontainment based on multiple genetic networks