Citation: He Xu, Xiao Yuping, Yuan Xinlei, Ye Shanghui, Jiang Hongji. Synthesis and Applications of Excimer Host Materials Based on 2, 4, 6-Triphenyl-1, 3, 5-triazine and Fluorene Moieties[J]. Chinese Journal of Organic Chemistry, ;2019, 39(3): 761-770. doi: 10.6023/cjoc201806017 shu

Synthesis and Applications of Excimer Host Materials Based on 2, 4, 6-Triphenyl-1, 3, 5-triazine and Fluorene Moieties

  • Corresponding author: Jiang Hongji, iamhjjiang@njupt.edu.cn
  • Received Date: 13 June 2018
    Revised Date: 21 September 2018
    Available Online: 11 March 2018

    Fund Project: the Natural Science Foundation of Jiangsu Province BM2012010the Major Research Program from the State Ministry of Science and Technology 2012CB933301Project supported by the Major Research Program from the State Ministry of Science and Technology (No. 2012CB933301), the National Natural Science Foundation of China (No. 21574068), the Priority Academic Program Development of Jiangsu Higher Education Institutions (No. YX03001) and the Natural Science Foundation of Jiangsu Province (No. BM2012010)the National Natural Science Foundation of China 21574068the Priority Academic Program Development of Jiangsu Higher Education Institutions YX03001

Figures(6)

  • Three new bipolar derivatives based on 2, 4, 6-triphenyl-1, 3, 5-triazine and fluorene moieties, namely FTRZ, pTFTRZ and mTFTRZ were designed and synthesized by using 9-(4-(hexyloxy) phenyl) -9H-fluorene, 2-bromo-4, 6-diphenyl-1, 3, 5-triazine, 2, 4, 6-tris(4-bromophenyl) -1, 3, 5-triazine, and 2, 4, 6-tris(3-bromophenyl) -1, 3, 5-triazine through palladium-cata-lyzed cross-coupling reaction, which were reported as hosts for thermally activated delayed fluorescence organic light-emitting diodes (OLEDs). The 1H NMR, 13C NMR and MALDI-TOF-MS spectra were used to characterize the chemical structure of compounds FTRZ, pTFTRZ and mTFTRZ. Their thermal, photophysical and electrochemical properties as well as electroluminescent device performance were thoroughly investigated to correlate the optoelectronic properties with the topology-varied molecular structure. The thermal decomposition temperatures of compounds FTRZ, pTFTRZ and mTFTRZ are 427, 446 and 424℃ and their glass transition temperatures of compounds pFTRZ and mTFTRZ are 120 and 103℃, respectively. The optical band gaps of compounds FTRZ, pTFTRZ and mTFTRZ in toluene solution are 3.24, 3.29 and 3.24 eV, and their triplet energy levels are 3.04, 3.11 and 3.05 eV, respectively. Due to the π-π interaction between 2, 4, 6-triphenyl-1, 3, 5-triazine planes, compounds FTRZ, pTFTRZ and mTFTRZ form excimer in the thin film state. The electroluminescent properties of OLEDs using compounds FTRZ, pTFTRZ and mTFTRZ as the hosts and 2, 4, 5, 6-tetrakis(carbazol-9-yl) -1, 3-dicyanobenzene as the guest emitter were investigated. The green OLED of compound FTRZ as host material shows a peak emission at 510 nm with a maximum current efficiency of 6.7 cd/A, a maximum external quantum efficiency of 2.07% and a maximum brightness of 35718 cd/m2. The efficiency roll-offs of the OLEDs hosted by compounds FTRZ and pTFTRZ at 20000 cd/m2 are 3% and 2%, which are much better than the same device hosted by compound mTFTRZ.
  • 加载中
    1. [1]

      Baldo, M. A.; O'Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M. E.; Forrest, S. R. Nature 1998, 395, 151.  doi: 10.1038/25954

    2. [2]

      Xiao, L. X.; Chen, Z. J.; Qu, B.; Luo, J. X.; Kong, S.; Gong, Q. H.; Kido, J. J. Adv. Mater. 2011, 23, 926.  doi: 10.1002/adma.v23.8

    3. [3]

      Baldo, M. A.; O'Brien, D. F.; Thompson, M. E.; Forrest, S. R. Phys. Rev. B. 1999, 60, 14422.  doi: 10.1103/PhysRevB.60.14422

    4. [4]

      Chen, L.; Jiang, Y.; Nie, H.; Hu, R.; Kwok, H. S.; Huang, F.; Qin, A.; Zhao, Z.; Tang, B. Z. ACS Appl. Mater. Interfaces 2014, 6, 17215.  doi: 10.1021/am505036a

    5. [5]

      Lee, C. W.; Kim, J.; Joo, S. H.; Lee, J. Y. ACS Appl. Mater. Interfaces 2013, 5, 2169.  doi: 10.1021/am303256c

    6. [6]

      Jeon, Y. P.; Kim, K. S.; Lee, K. K.; Moon, I. K.; Choo, D. C.; Lee, J. Y.; Kim, T. W. J. Mater. Chem. C. 2015, 3, 6192.  doi: 10.1039/C5TC00279F

    7. [7]

      Xiang, C. Y.; Fu, X.; Wei, W.; Liu, R.; Zhang, Y.; Balema, V.; Nelson, B.; So, F. Adv. Funct. Mater. 2016, 26, 1463.  doi: 10.1002/adfm.201504357

    8. [8]

      Huang, J.; Leung, M.; Chiu, T.; Chuang, Y.; Chou, P.; Hung, Y. Org. Lett. 2014, 16, 5398.  doi: 10.1021/ol502602t

    9. [9]

      Tan, J.-H.; Huo, Y.-P.; Cai, N.; Ji, S.-M.; Li, Z.-Z.; Zhang, L. Chin. J. Org. Chem. 2017, 37, 2457(in Chinese).
       

    10. [10]

      Tanaka, H.; Shizu, K.; Nakanotani, H.; Adachi, C. J. Phys. Chem. C. 2014, 118, 15985.  doi: 10.1021/jp501017f

    11. [11]

      Tanaka, H.; Shizu, K.; Nakanotani, H.; Adachi, C. Chem. Mater. 2013, 25, 3766.  doi: 10.1021/cm402428a

    12. [12]

      Huang, B.; Tang, J.-N; Jiang, W.; Yang, W.; Ban, X.-X.; Sun, Y.-M. Chin. J. Org. Chem. 2013, 33, 1395(in Chinese).
       

    13. [13]

      Tao, Y. T.; Wang, Q.; Yang, C. L.; Wang, Q.; Zhang, Z. Q.; Zou, T. T.; Qin, J. G.; Ma, D. G. Angew. Chem., Int. Ed. 2008, 47, 8104.  doi: 10.1002/anie.v47:42

    14. [14]

      Li, W.; Li, J.; Liu, D.; Wang, F.; Zhang, S. J. Mater. Chem. C 2015, 3, 12529.  doi: 10.1039/C5TC02997J

    15. [15]

      Lee, C. W.; Lee, J. Y. ACS Appl. Mater. Interfaces 2015, 7, 2899.  doi: 10.1021/am508259u

    16. [16]

      Yang, R.; Li, D.; Bai, Y.; Zhang, L.; Liu, Z.; Hao, J.; Wei, Q.; Liao, L.; Peng, R.; Ge, Z. Org. Electron. 2018, 55, 117.  doi: 10.1016/j.orgel.2018.01.026

    17. [17]

      Wong, K. T.; Chen, Y. M.; Lin, Y. T.; Su, H. C.; Wu, C. C. Org. Lett. 2005, 7, 5361.  doi: 10.1021/ol051977h

    18. [18]

      Li, H.; Xu, L.; Tang, Y.; Tao, Y.; Xu, S.; Zheng, C.; Xing, G.; Zhou, X.; Huang, W. Chen, R. J. Mater. Chem. C 2016, 4, 10047.  doi: 10.1039/C6TC03877H

    19. [19]

      Ting, H. C.; Chen, Y. M.; You, H. W.; Hung, W. Y.; Lin, S. H.; Chaskar, A.; Chou, S. H.; Chi, Y.; Liu, R. H.; Wong, K. T. J. Mater. Chem. 2012, 22, 8399.  doi: 10.1039/c2jm30207a

    20. [20]

      Wu, C.; Guo, Q. X.; Ma, W. J.; Li, X. P.; Qiu, P. L.; Hu, J. Y.; Wang, Q.; Chen, J. S.; Ma, D. G. Phys. Chem. Chem. Phys. 2017, 19, 5177.  doi: 10.1039/C6CP08334J

    21. [21]

      Cheng, S.; Hung, W.; Cheng, M.; Chen, H.; Chaskar, A.; Lee, G.; Chou, S.; Wong, K. J. Mater. Chem. C 2014, 2, 8554.  doi: 10.1039/C4TC01463D

    22. [22]

      Gong, S.; Zhao, Y.; Yang, C.; Zhong, C.; Qin, J.; Ma, D. J. Phys. Chem. C 2010, 114, 5193.  doi: 10.1021/jp100034r

    23. [23]

      Chen, K.; Zhao, H.; Fan, Z.; Yin, G.; Chen, Q.; Quan, Y.; Li, S.; Ye, S. Org. Lett. 2015, 17, 1413.  doi: 10.1021/acs.orglett.5b00292

    24. [24]

      Fan, Z.; Zhao, H.; Li, N.; Quan, Y.; Chen, Q.; Ye, S.; Li, S.; Wang, Y.; Fan, Q.; Huang, W. ACS Appl. Mater. Interfaces 2015, 7, 9445.  doi: 10.1021/am509014v

    25. [25]

      Ye, S.; Li, L.; Zhang, M.; Zhou, Z.; Quan, M.; Guo, L.; Wang, Y.; Yang, M.; Lai, W.; Huang, W. J. Phys. Chem. C 2017, 5, 11937.

    26. [26]

      Mondal, E.; Hung, W.; Dai, H.; Wong, K. Adv. Funct. Mater. 2013, 23, 3096.  doi: 10.1002/adfm.v23.24

    27. [27]

      Li, J.; Li, Y.; Zhao, Y.; Liu, X.; Fung, M.; Fan, J. Org. Electron. 2018, 54, 140.  doi: 10.1016/j.orgel.2017.12.033

    28. [28]

      Kim, G. H.; Lampande, R.; Park, M. J.; Bae, H. W.; Kong, J. H.; Kwon, J. H.; Park, J. H.; Park, Y. W.; Song, C. E. J. Phys. Chem. C 2014, 118, 28757.  doi: 10.1021/jp507036h

    29. [29]

      Yu, J.; Zang, C.; Yu, Z.; Wang, H.; Liu, S.; Zhang, L.; Xie, W.; Zhao, H. Org. Electron. 2016, 38, 301.  doi: 10.1016/j.orgel.2016.09.002

    30. [30]

      Lin, W. C.; Lin, H. W.; Mondal, E.; Wong, K. T. Org. Electron. 2015, 17, 1.  doi: 10.1016/j.orgel.2014.11.002

    31. [31]

      Li, W.; Li, J.; Liu, D.; Li, D.; Wang, F. ACS Appl. Mater. Interfaces 2016, 8, 21497.  doi: 10.1021/acsami.6b04395

    32. [32]

      Guo, K.; Wang, H.; Wang, Z.; Si, C.; Peng, C.; Chen, G.; Zhang, J.; Wang, G.; Wei, B. Chem. Sci. 2017, 8, 1259.  doi: 10.1039/C6SC03008D

    33. [33]

      Chang, C.; Kuo, M.; Lin, W.; Chen, Y.; Wong, K.; Chou, S.; Mondal, E.; Kwong, R. C.; Xia, S.; Nakagawa, T.; Adachi, C. J. Mater. Chem. 2012, 22, 3832.  doi: 10.1039/c2jm14686j

    34. [34]

      Rothmann, M. M.; Haneder, S.; Da Como, E.; Lennartz, C.; Schildknecht, C.; Strohriegl, P. Chem. Mater. 2010, 22, 2403.  doi: 10.1021/cm9033879

    35. [35]

      Wen, G. A.; Xin, Y.; Zhu, X. R.; Zeng, W. J.; Zhu, R.; Feng, J. C.; Cao, Y.; Zhao, L.; Wang, L. H.; Wei, W.; Peng, B.; Huang, W. Polymer 2007, 48, 1824.  doi: 10.1016/j.polymer.2006.10.032

    36. [36]

      Rothmann, M. M.; Fuchs, E.; Schildknecht, C.; Langer, N.; Lennartz, C.; Munster, I.; Strohriegl, P. Org. Electron. 2011, 12, 1192.  doi: 10.1016/j.orgel.2011.03.038

    37. [37]

      Xie, L. H.; Hou, X. Y.; Hua, Y. R.; Tang, C.; Liu, F.; Fan, Q. L.; Huang, W. Org. Lett. 2006, 8, 3701.  doi: 10.1021/ol061268j

    38. [38]

      Ego, C.; Grimsdale, A. C.; Uckert, F.; Yu, G.; Srdanov, G.; Müllen, K. Adv. Mater. 2002, 14, 809.  doi: 10.1002/1521-4095(20020605)14:11<809::AID-ADMA809>3.0.CO;2-8

    39. [39]

      Cao, X.; Yang, W. D.; Liu, C.; Wei, F. L.; Wu, K.; Sun, W.; Song, J.; Xie, L. H.; Huang, W. Org. Lett. 2013, 15, 3102.  doi: 10.1021/ol4013052

    40. [40]

      Wang, F. F.; Hu, J.; Cao, X. D.; Yang, T.; Tao, Y. T.; Mei, L.; Zhang, X. W.; Huang, W. J. Mater. Chem. C 2015, 3, 5533.  doi: 10.1039/C5TC00350D

    41. [41]

      Zhang, Q.; Fang, D.; Jiang, H.; Zhang, X.; Zhang, H. Org. Electron. 2015, 27, 173.  doi: 10.1016/j.orgel.2015.09.002

    42. [42]

      Zhang, Y. W.; Ma, H. L.; Wang, S. P.; Li, Z. Q.; Ye, K. Q.; Zhang, J. Y.; Liu, Y.; Peng, Q.; Wang, Y. J. Phys. Chem. C 2016, 120, 19759.  doi: 10.1021/acs.jpcc.6b05537

    43. [43]

      Zhang, Q. S.; Li, B.; Huang, S. P.; Nomura, H.; Tanaka, H.; Adachi, C. Nat. Photonics 2014, 8, 326.  doi: 10.1038/nphoton.2014.12

    44. [44]

      Bagnich, S. A.; Athanasopoulos, S.; Rudnick, A.; Schroegel, P.; Bauer, I.; Greenham, N. C.; Strohriegl, P.; Köhler, A. J. Phys. Chem. C 2015, 119, 2380.  doi: 10.1021/jp512772j

    45. [45]

      Jeong, S. J.; Lee, Y. N.; Kim, J. K.; Jang, D. J.; Hong, J. I. J. Mater. Chem. C 2018, 6, 9049.

    46. [46]

      Tanaka, H.; Shizu, K.; Nakanotani, H.; Adachi, C. J. Phys. Chem. C 2014, 118, 15985.  doi: 10.1021/jp501017f

    47. [47]

      Rudnick, A. A.; Bagnich, S.; Wagner, D.; Athanasopoulos, S.; Strohriegl, P.; Köhler, A. J. Chem. Phys. 2016, 144, 1.

    48. [48]

      Xie, Z. L.; Chen, C. J.; Xu, S. D.; Li, J.; Zhang, Y.; Liu, S. W.; Xu, J. R.; Chi, Z. G. Angew. Chem., Int. Ed. 2015, 54, 7181.  doi: 10.1002/anie.201502180

    49. [49]

      Hirata, S.; Sakai, Y.; Masui, K.; Tanaka, H.; Lee, S. Y.; Nomura, H.; Nakamura, N.; Yasumatsu, M.; Nakanotani, H.; Zhang, Q. S.; Shizu, K.; Miyazaki, H.; Adachi, C. Nat. Mater. 2015, 14, 330.  doi: 10.1038/nmat4154

    50. [50]

      Jiang, H. J.; Zhang, Q. W.; He, X.; Zhang, X. L.; Zhang, X. W. Chin. J. Polym. Sci. 2017, 35, 611.  doi: 10.1007/s10118-017-1926-5

    51. [51]

      Tanaka, H.; Shizu, K.; Miyazaki, H.; Adachi, C. Chem. Commun. 2012, 48, 11392.  doi: 10.1039/c2cc36237f

    52. [52]

      Grisorio, R.; Allegretta, G.; Mastrorilli, P.; Surana, G. P. Macromolecules 2011, 44, 7977.  doi: 10.1021/ma2015003

    53. [53]

      An, Z. F.; Chen, R, F.; Yin, J.; Xie, G. H.; Shi, H. F.; Tsuboi, T.; Huang, W. Chem.-Eur. J. 2011. 17. 10871.  doi: 10.1002/chem.v17.39

  • 加载中
    1. [1]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    2. [2]

      Hui PengXiao WangWeiguo HuangShuiyue YuLinghang KongQilin WeiJialong ZhaoBingsuo Zou . Efficient tunable visible and near-infrared emission in Sb3+/Sm3+-codoped Cs2NaLuCl6 for near-infrared light-emitting diode, triple-mode fluorescence anti-counterfeiting and information encryption. Chinese Chemical Letters, 2024, 35(11): 109462-. doi: 10.1016/j.cclet.2023.109462

    3. [3]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    4. [4]

      Xinguo MaoShuo ZhangQiang ShiHua ChengLeyong Wang . Macrocyclic host molecules: Rising as a promising supramolecular material. Chinese Chemical Letters, 2025, 36(6): 110950-. doi: 10.1016/j.cclet.2025.110950

    5. [5]

      Yuan LiuBoyang WangYaxin LiWeidong LiSiyu Lu . Understanding excitonic behavior and electroluminescence light emitting diode application of carbon dots. Chinese Chemical Letters, 2025, 36(2): 110426-. doi: 10.1016/j.cclet.2024.110426

    6. [6]

      Xiangan SongShaogang ShenMengyao LuYing WangYong Zhang . Trifluoromethyl enable high-performance single-emitter white organic light-emitting devices based on quinazoline acceptor. Chinese Chemical Letters, 2024, 35(4): 109118-. doi: 10.1016/j.cclet.2023.109118

    7. [7]

      Haowen ShangYujie YangBingjie XueYikai WangZhiyi SuWenlong LiuYouzhi WuXinjun Xu . Efficient solution-processed near-infrared organic light-emitting diodes with a binary-mixed electron transport layer. Chinese Chemical Letters, 2025, 36(4): 110511-. doi: 10.1016/j.cclet.2024.110511

    8. [8]

      Hao ZhuoMing ZhangHengyuan ZhangHui LinGang YangSilu TaoCaijun ZhengXiaohong Zhang . Modified triphenylamine donors with shallower HOMO energy levels to construct long-wavelength TADF emitters of efficient organic light-emitting diodes. Chinese Chemical Letters, 2025, 36(5): 110760-. doi: 10.1016/j.cclet.2024.110760

    9. [9]

      Shaonan Liu Shuixing Dai Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2024.100277

    10. [10]

      Xinghong CaiQiang YangYao TongLanyin LiuWutang ZhangSam ZhangMin Wang . AlO2: A novel two-dimensional material with a high negative Poisson's ratio for the adsorption of volatile organic compounds. Chinese Chemical Letters, 2025, 36(2): 109586-. doi: 10.1016/j.cclet.2024.109586

    11. [11]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

    12. [12]

      Yanrui Liu Paramaguru Ganesan Peng Gao . Harnessing d-f transition rare earth complexes for single layer white organic light emitting diodes. Chinese Journal of Structural Chemistry, 2024, 43(9): 100369-100369. doi: 10.1016/j.cjsc.2024.100369

    13. [13]

      Bingbing ShiYuchun WangYi ZhouXing-Xing ZhaoYizhou LiNuoqian YanWen-Juan QuQi LinTai-Bao Wei . A supramolecular oligo[2]rotaxane constructed by orthogonal platinum(Ⅱ) metallacycle and pillar[5]arene-based host–guest interactions. Chinese Chemical Letters, 2024, 35(10): 109540-. doi: 10.1016/j.cclet.2024.109540

    14. [14]

      Min LUOXiaonan WANGYaqin ZHANGTian PANGFuzhi LIPu SHI . Porous spherical MnCo2S4 as high-performance electrode material for hybrid supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 413-424. doi: 10.11862/CJIC.20240205

    15. [15]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    16. [16]

      Yue QianZhoujia LiuHaixin SongRuize YinHanni YangSiyang LiWeiwei XiongSaisai YuanJunhao ZhangHuan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785

    17. [17]

      Huakang ZongXinyue LiYanlin ZhangFaxun WangXingxing YuGuotao DuanYuanyuan Luo . Pt/Ti3C2 electrode material used for H2S sensor with low detection limit and high stability. Chinese Chemical Letters, 2025, 36(5): 110195-. doi: 10.1016/j.cclet.2024.110195

    18. [18]

      Run ChaiQiujie WuYongchao LiuXiaohui SongXuyong FengYi SunHongfa Xiang . A 3D dual layer host with enhanced sodiophilicity as stable anode for high-energy sodium metal batteries. Chinese Chemical Letters, 2025, 36(6): 110007-. doi: 10.1016/j.cclet.2024.110007

    19. [19]

      Hao SunXiaoxue LiBaoyu WuKai ZhuYinyi GaoTianzeng BaoHongbin WuDianxue Cao . Direct regeneration of spent LiFePO4 cathode material via a simple solid-phase method. Chinese Chemical Letters, 2025, 36(6): 110041-. doi: 10.1016/j.cclet.2024.110041

    20. [20]

      Ting-Ting HuangJin-Fa ChenJuan LiuTai-Bao WeiHong YaoBingbing ShiQi Lin . A novel fused bi-macrocyclic host for sensitive detection of Cr2O72− based on enrichment effect. Chinese Chemical Letters, 2024, 35(7): 109281-. doi: 10.1016/j.cclet.2023.109281

Metrics
  • PDF Downloads(10)
  • Abstract views(1497)
  • HTML views(77)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return