Citation: Yan Bingchao, Hu Kun, Sun Handong, Puno Pematenzin. Recent Advances in the Synthesis of Isodon Diterpenoids and Schinortriterpenoids[J]. Chinese Journal of Organic Chemistry, ;2018, 38(9): 2259-2280. doi: 10.6023/cjoc201806002 shu

Recent Advances in the Synthesis of Isodon Diterpenoids and Schinortriterpenoids

  • Corresponding author: Puno Pematenzin, punopematenzin@mail.kib.ac.cn
  • Received Date: 1 June 2018
    Revised Date: 9 August 2018
    Available Online: 14 September 2018

    Fund Project: the National Natural Science Foundation of China 81673329Project supported by the National Natural Science Foundation of China (No. 81673329)

Figures(21)

  • The plants of the genus Isodon and the schisandraceae family are two economically and medicinally important phytogroups, and the research of chemical constituents from these two phytogroups has been recognized as one of the most outstanding achievements in natrural product research recently. So far, over 1200 diterpenoids classified into 11 different groups have been reported from the Isodon species and more than 200 schinortriterpenoids (SNTs) involving more than 20 skeletons have been isolated from the schisandraceae species. Their diverse scffolds and significant bioactivities have aroused great interest among the community of organic synthetic chimistry. In this review, the advances in the synthesis of Isodon diterpenoids and schinortriterpenoids during the past decade will be reviewed.
  • 加载中
    1. [1]

      (a) Liu, M.; Wang, W.-G.; Sun, H.-D.; Pu, J.-X. Nat. Prod. Rep. 2017, 34, 1090.
      (b) Sun, H.-D.; Huang, S.-X.; Han, Q.-B. Nat. Prod. Rep. 2006, 23, 673.
      (c) Xiao, W.-L.; Li, R.-T.; Huang, S.-X.; Pu, J.-X.; Sun, H.-D. Nat.Prod. Rep. 2008, 25, 871.
      (d) Xia, Y.-G.; Yang, B.-Y.; Kuang, H.-X. Phytochem. Rev. 2015, 14, 155.

    2. [2]

      Jiang, B.; Lu, Z.-Q.; Sun, H.-D. Nat. Prod. Lett. 1998, 12, 281.  doi: 10.1080/10575639808048303

    3. [3]

      Wang, J.; Lin, Z.-W.; Zhao, Q.-S.; Sun, H.-D. Phytochemistry 1998, 47, 307.  doi: 10.1016/S0031-9422(97)00418-4

    4. [4]

      Han, Q.-B.; Cheung, S.; Tai, J.; Qiao, C.-F.; Song, J.-Z.; Tso, T.-F.; Sun, H.-D.; Xu, H.-X. Org. Lett. 2006, 8, 4727.  doi: 10.1021/ol061757j

    5. [5]

      Hou, A.-J.; Yang, H.; Jiang, B.; Zhao, Q.-S.; Liu, Y.-Z.; Lin, Z.-W.; Sun, H.-D. Chin. Chem. Lett. 2000, 11, 795.

    6. [6]

      Li, S.-H.; Wang, J.; Niu, X.-M.; Shen, Y.-H.; Zhang, H.-J.; Sun, H.-D.; Li, M.-L.; Tian, Q.-E.; Lu, Y.; Cao, P.; Zheng, Q.-T. Org. Lett. 2004, 6, 4327.  doi: 10.1021/ol0481535

    7. [7]

      Huang, B.; Xiao, C.-J.; Huang, Z.-Y.; Tian, X.-Y.; Cheng, X.; Dong, X.; Jiang, B. Org. Lett. 2014, 16, 3552.  doi: 10.1021/ol501417k

    8. [8]

      Huang, S.-X.; Zhou, Y.; Yang, L.-B.; Zhao, Y.; Li, S.-H.; Lou, L.-G.; Han, Q.-B.; Ding, L.-S.; Sun, H.-D. J. Nat. Prod. 2007, 70, 1053.  doi: 10.1021/np070086a

    9. [9]

      Weng, Z.-Y.; Huang, S.-X.; Han, Q. B.; Xiao, W.-L.; Sun, H.-D. Acta Botanica Yunnanica 2007, 29, 256(in Chinese).  doi: 10.3969/j.issn.2095-0845.2007.02.023

    10. [10]

      Zou, J.; Pan, L.-T.; Li, Q.-J.; Zhao, J.-H.; Pu, J.-X.; Yao, P.; Gong, N.-B.; Lu, Y.; Kondratyuk, T. P.; Pezzuto, J. M.; Fong, H. H. S.; Zhang, H.-J.; Sun, H.-D. Org. Lett. 2011, 13, 1406.  doi: 10.1021/ol200086k

    11. [11]

      Zhao, Y.; Huang, S.-X.; Xiao, W.-L.; Ding, L.-S.; Pu, J.-X.; Li, X.; Yang, L.-B.; Sun, H.-D. Tetrahedron Lett. 2009, 50, 2019.  doi: 10.1016/j.tetlet.2009.02.102

    12. [12]

      Huang, Z.-Y.; Huang, B.; Xiao, C.-J.; Dong, X.; Jiang, B. Nat. Prod. Res. 2015, 29, 628.  doi: 10.1080/14786419.2014.980248

    13. [13]

      Zhou, M.; Li, X.-R.; Tang, J.-W.; Liu, Y.; Li, X.-N.; Wu, B.; Qin, H.-B.; Du, X.; Li, L.-M.; Wang, W.-G.; Pu, J.-X.; Sun, H.-D. Org. Lett. 2015, 17, 6062.  doi: 10.1021/acs.orglett.5b03079

    14. [14]

      Zhao, X.-B.; Li, W.; Wang, J.-J.; Ma, D.-W. J. Am. Chem. Soc. 2017, 139, 2932.  doi: 10.1021/jacs.7b00140

    15. [15]

      Li, Y. Z.; Chen, Y. Z. J. Nat. Prod. 1990, 53, 841.  doi: 10.1021/np50070a011

    16. [16]

      Zhao, Y.; Pu, J.-X.; Huang, S.-X.; Ding, L.-S.; Wu, Y.-L.; Li, X.; Yang, L.-B.; Xiao, W.-L.; Chen, G.-Q.; Sun, H.-D. J. Nat. Prod. 2009, 72, 988.  doi: 10.1021/np9000366

    17. [17]

      Xu, H.-Z.; Huang, Y.; Wu, Y.-L.; Zhao, Y.; Xiao, W.-L.; Lin, Q.-S.; Sun, H.-D.; Dai, W.; Chen, G.-Q. Cell Cycle 2010, 9, 2897.

    18. [18]

      He, C.; Hu, J.-L.; Wu, Y.-B.; Ding, H.-F. J. Am. Chem. Soc. 2017, 139, 6098.  doi: 10.1021/jacs.7b02746

    19. [19]

      (a) Niu, X.-M.; Li, S.-H.; Mei, S.-X.; Na, Z.; Zhao, Q.-S.; Lin, Z.-W.; Sun, H.-D. J. Nat. Prod. 2002, 65, 1892.
      (b) Wang, W.-G.; Li, X.-N.; Du, X.; Wu, H.-Y.; Liu, X.; Su, J.; Li, Y.; Pu, J.-X.; Sun, H.-D. J. Nat. Prod. 2012, 75, 1102.

    20. [20]

      Su, F.; Lu, Y. D.; Kong, L. R.; Liu, J. J.; Luo, T. P. Angew. Chem., Int. Ed. 2018, 57, 760.  doi: 10.1002/anie.201711084

    21. [21]

      Zhu, L.-Z.; Ma, W.-J.; Zhang, M.-X.; Lee, M. M. L.; Wong, W.-Y.; Chan, B.-D.; Yang, Q.-Q.; Wong, W.-T.; Tai, W. C. S.; Lee, C.-S. Nat. Commun. 2018, 9, 10.  doi: 10.1038/s41467-017-02449-5

    22. [22]

      Wang, W.-G.; Yang, J.; Wu, H.-Y.; Kong, L.-M.; Su, J.; Li, X.-N.; Du, X.; Zhan, R.; Zhou, M.; Li, Y.; Pu, J.-X.; Sun, H.-D. Tetrahedron 2015, 71, 9161.  doi: 10.1016/j.tet.2015.09.066

    23. [23]

      Node, M.; Sai, M.; Fuji, K.; Fujita, E.; Singu, T.; Watson, W. H.; Grossie, D. Chem. Lett. 1982, 11, 2023.  doi: 10.1246/cl.1982.2023

    24. [24]

      Cha, J. Y.; Yeoman, J. T. S.; Reisman, S. E. J. Am. Chem. Soc. 2011, 133, 14964.  doi: 10.1021/ja2073356

    25. [25]

      Yeoman, J. T. S.; Mak, V. W.; Reisman, S. E. J. Am. Chem. Soc. 2013, 135, 11764.  doi: 10.1021/ja406599a

    26. [26]

    27. [27]

      Lv, Z.; Chen, B.-L.; Zhang, C.; Liang, G.-X. Chem.-Eur. J. 2018, 24, 9773.  doi: 10.1002/chem.v24.39

    28. [28]

      Han, Q.-B.; Li, R.-T.; Zhang, J.-X.; Sun, H.-D. Helv. Chim. Acta 2004, 87, 1119.  doi: 10.1002/(ISSN)1522-2675

    29. [29]

      Zhang, M.; Zhang, Y.-M.; Lu, W.; Nan, F.-J. Org. Biomol. Chem. 2011, 9, 4436.  doi: 10.1039/c1ob05611e

    30. [30]

      (a) Li, X.; Pu, J.-X.; Weng, Z.-Y.; Zhao, Y.; Zhao, Y.; Xiao, W.-L.; Sun, H.-D. Chem. Biodiversity 2010, 7, 2888.
      (b) Pan, Z.-Q.; Zheng, C.-Y.; Wang, H.-Y.; Chen, Y.-H.; Li, Y.; Cheng, B.; Zhai, H.-B. Org. Lett. 2014, 1, 216.
      (c) Moritz, B. J.; Mack, D. J.; Tong, L. C.; Thomson, R. J. Angew. Chem., Int. Ed. 2014, 53, 2988.

    31. [31]

      Gong, J.-X.; Lin, G.; Sun, W.-B.; Li, C.-C.; Yang, Z. J. Am. Chem. Soc. 2010, 132, 16745.  doi: 10.1021/ja108907x

    32. [32]

      Peng, F.; Danishefsky, S. J. J. Am. Chem. Soc. 2012, 134, 18860.  doi: 10.1021/ja309905j

    33. [33]

      (a) Lu, P.; Gu, Z.-H.; Zakarian, A. J. Am. Chem. Soc. 2013, 135, 14552.
      (b) Lu, P.; Mailyan, A.; Gu, Z. H.; Guptill, D. M.; Wang, H. B.; Davies, H. M. L.; Zakarian, A. J. Am. Chem. Soc. 2014, 136, 17738.

    34. [34]

      Zheng, C.-W.; Dubovyk, I.; Lazarski, K. E.; Thomson, R. J. J. Am. Chem. Soc. 2014, 136, 17750.  doi: 10.1021/ja5109694

    35. [35]

      Cernijenko, A.; Risgaard, R.; Baran, P. S. J. Am. Chem. Soc. 2016, 138, 9425.  doi: 10.1021/jacs.6b06623

    36. [36]

      (a) Gong, J.-X.; Lin, G.; Li, C.-C.; Yang, Z. Org. Lett. 2009, 11, 4770.
      (b) Smith, B. R.; Njardarson, J. T. Org. Lett. 2017, 19, 5316.
      (c) Singh, V.; Bhalerao, P.; Mobin, S. M. Tetrahedron Lett. 2010, 51, 3337.
      (d) Peng, F.; Yu, M.; Danishefsky, S. J. Tetrahedron Lett. 2009, 50, 6586.
      (e) Peng, F.; Danishefsky, S. J. Tetrahedron Lett. 2011, 52, 2104.
      (f) Nicolaou, K. C.; Dong, L.; Deng, L.; Talbot, A. C.; Chen, D. Y. K. Chem. Commun. 2010, 46, 72.
      (g) Lazarski, K. E.; Hu, D. X.; Stern, C. L.; Thomson, R. J. Org. Lett. 2010, 12, 3010.
      (h) Lazarski, K. E.; Akpinar, B.; Thomson, R. J. Tetrahedron Lett. 2013, 54, 635.
      (i) Krawczuk, P. J.; Schoene, N.; Baran, P. S. Org. Lett. 2009, 11, 4774.
      (j) Jansone-Popova, S.; May, J. A. Tetrahedron 2016, 72, 3734.
      (k) Gu, Z.; Zakarian, A. Org. Lett. 2011, 13, 1080.
      (l) Dong, L.; Deng, L.; Lim, Y. H.; Leung, G. Y. C.; Chen, D. Y. K. Chem.-Eur. J. 2011, 17, 5778.
      (m) Carberry, P.; Viernes, D. R.; Choi, L. B.; Fegley, M. W.; Chisholm, J. D. Tetrahedron Lett. 2013, 54, 1734.
      (n) Baitinger, I.; Mayer, P.; Trauner, D. Org. Lett. 2010, 12, 5656.

    37. [37]

      Zhang, W.-B.; Shao, W.-B.; Li, F.-Z.; Gong, J.-X.; Yang, Z. Chem.-Asian J. 2015, 10, 1874.  doi: 10.1002/asia.v10.9

    38. [38]

      Deng, H.-P.; Cao, W.; Zhang, Z.-J.; Liu, B. Org. Biomol. Chem. 2016, 14, 6225.  doi: 10.1039/C6OB00750C

    39. [39]

      Zhou, M.; Geng, H.-C.; Zhang, H.-B.; Dong, K.; Wang, W.-G.; Du, X.; Li, X.-N.; He, F.; Qin, H.-B.; Li, Y.; Pu, J.-X.; Sun, H.-D. Org. Lett. 2013, 15, 314.  doi: 10.1021/ol303226c

    40. [40]

      Deng, H.-P.; Cao, W.; Liu, R.; Zhang, Y.-H.; Liu, B. Angew. Chem., Int. Ed. 2017, 56, 5849.  doi: 10.1002/anie.201700958

    41. [41]

      Li, F.; Tu, Q.; Chen, S.; Zhu, L.; Lan, Y.; Gong, J.-X. Angew. Chem., Int. Ed. 2017, 56, 5844.  doi: 10.1002/anie.201700838

    42. [42]

      (a) Tang, Y.-F.; Zhang, Y.-D.; Dai, M.-J.; Luo, T.-P.; Deng, L.-J.; Chen, J.-H.; Yang, Z. Org. Lett. 2005, 7, 885.
      (b) Zhang, Y.-D.; Tang, Y.-F.; Luo, T.-P.; Shen, J.; Chen, J.-H.; Yang, Z. Org. Lett. 2006, 8, 107.
      (c) Zhang, Y.-D.; Ren, W.-W.; Lan, Y.; Xiao, Q.; Wang, K.; Xu, J.; Chen, J.-H.; Yang, Z. Org. Lett. 2008, 10, 665.

    43. [43]

      Xiao, Q.; Ren, W.-W.; Chen, Z.-X.; Sun, T.-W.; Li, Y.; Ye, Q.-D.; Gong, J.-X.; Meng, F.-K.; You, L.; Liu, Y.-F.; Zhao, M.-Z.; Xu, L.-M.; Shan, Z.-H.; Shi, Y.; Tang, Y.-F.; Chen, J.-H.; Yang, Z. Angew. Chem., Int. Ed. 2011, 50, 7373.  doi: 10.1002/anie.v50.32

    44. [44]

      You, L.; Liang, X.-T.; Xu, L.-M.; Wang, Y.-F.; Zhang, J.-J.; Su, Q.; Li, Y.-H.; Zhang, B.; Yang, S.-L.; Chen, J.-H.; Yang, Z. J. Am. Chem. Soc. 2015, 137, 10120.  doi: 10.1021/jacs.5b06480

    45. [45]

      (a) Han, Y.-X.; Jiang, Y.-L.; Li, Y.; Yu, H.-X.; Tong, B.-Q.; Niu, Z.; Zhou, S.-J.; Liu, S.; Lan, Y.; Chen, J.-H.; Yang, Z. Nat. Commun. 2017, 8, 13.
      (b) Liu, D.-D.; Sun, T.-W.; Wang, K.-Y.; Lu, Y.; Zhang, S.-L.; Li, Y.-H.; Jiang, Y.-L.; Chen, J.-H.; Yang, Z. J. Am. Chem. Soc. 2017, 139, 5732.

    46. [46]

      Li, J.; Yang, P.; Yao, M.; Deng, J.; Li, A. J. Am. Chem. Soc. 2014, 136, 16477.  doi: 10.1021/ja5092563

    47. [47]

      Yang, P.; Yao, M.; Li, J.; Li, Y.; Li, A. Angew. Chem., Int. Ed. 2016, 55, 6964.  doi: 10.1002/anie.201601915

    48. [48]

      Goh, S. S.; Chaubet, G.; Gockel, B.; Cordonnier, M. C. A.; Baars, H.; Phillips, A. W.; Anderson, E. A. Angew. Chem., Int. Ed. 2015, 54, 12618.  doi: 10.1002/anie.201506366

    49. [49]

      (a) Wang, L.; Wang, H.-T.; Li, Y.-H.; Tang, P.-P. Angew. Chem., Int. Ed. 2015, 54, 5732.
      (b) Wang, H. T.; Zhang, X. A.; Tang, P. P. Chem. Sci. 2017, 8, 7246.

    50. [50]

      Huang, S.-X.; Li, R.-T.; Liu, J.-P.; Lu, Y.; Chang, Y.; Lei, C.; Xiao, W.-L.; Yang, L.-B.; Zheng, Q.-T.; Sun, H.-D. Org. Lett. 2007, 9, 2079.  doi: 10.1021/ol070510z

    51. [51]

      Lei, C.; Huang, S.-X.; Chen, J.; Yang, L.-B.; Xiao, W.-L.; Chang, Y.; Lu, Y.; Huang, H.; Pu, J.-X.; Sun, H.-D. J. Nat. Prod. 2008, 71, 1228.  doi: 10.1021/np8001699

    52. [52]

      Xiao, W.-L.; Yang, L.-M.; Gong, N.-B.; Wu, L.; Wang, R.-R.; Pu, J.-X.; Li, X.-L.; Huang, S.-X.; Zheng, Y.-T.; Li, R.-T.; Lu, Y.; Zheng, Q.-T.; Sun, H.-D. Org. Lett. 2006, 8, 991.  doi: 10.1021/ol060062f

    53. [53]

      Luo, X.; Shi, Y.-M.; Luo, R.-H.; Luo, S.-H.; Li, X.-N.; Wang, R.-R.; Li, S.-H.; Zheng, Y.-T.; Du, X.; Xiao, W.-L.; Pu, J.-X.; Sun, H.-D. Org. Lett. 2012, 14, 1286.  doi: 10.1021/ol300099e

    54. [54]

      Luo, X.; Chang, Y.; Zhang, X.-J.; Pu, J.-X.; Gao, X.-M.; Wu, Y.-L.; Wang, R.-R.; Xiao, W.-L.; Zheng, Y.-T.; Lu, Y.; Chen, G.-Q.; Zheng, Q.-T.; Sun, H.-D. Tetrahedron Lett. 2009, 50, 5962.  doi: 10.1016/j.tetlet.2009.08.051

    55. [55]

      Wang, W.-G.; Du, X.; Li, X.-N.; Wu, H.-Y.; Liu, X.; Shang, S.-Z.; Zhan, R.; Liang, C.-G.; Kong, L.-M.; Li, Y.; Pu, J.-X.; Sun, H.-D. Org. Lett. 2012, 14, 302.  doi: 10.1021/ol203061z

    56. [56]

      Zou, J.; Du, X.; Pang, G.; Shi, Y.-M.; Wang, W.-G.; Zhan, R.; Kong, L.-M.; Li, X.-N.; Li, Y.; Pu, J.-X.; Sun, H.-D. Org. Lett. 2012, 14, 3210.  doi: 10.1021/ol3013205

    57. [57]

      (a) Liu, M.; Luo, Y.-Q.; Wang, W.-G.; Shi, Y.-M.; Wu, H.-Y.; Du, X.; Pu, J.-X.; Sun, H.-D. Nat. Prod. Commun. 2015, 10, 2045.
      (b) Ding, W.-P.; Hu, K.; Liu, M.; Li, X.-R.; Chen, R.; Li, X.-N.; Du, X.; Puno, P.-T.; Sun, H.-D. Fitoterapia 2018, 127, 193.
      (c) Liu, Y.; Tian, T.; Yu, H.-Y.; Zhou, M.; Ruan, H.-L. Fitoterapia 2017, 118, 38.
      (d) Shi, Y.-M.; Cai, S.-L.; Li, X.-N.; Liu, M.; Shang, S.-Z.; Du, X.; Xiao, W.-L.; Pu, J.-X.; Sun, H.-D. Org. Lett. 2016, 18, 100.
      (e) Shi, Y.-M.; Hu, K.; Pescitelli, G.; Liu, M.; Li, X.-N.; Du, X.; Xiao, W.-L.; Sun, H.-D.; Puno, P.-T. Org. Lett. 2018, 20, 1500.
      (f) Song, J.; Liu, Y.; Zhou, M.; Cao, H.; Peng, X.-G.; Liang, J.-J.; Zhao, X.-Y.; Xiang, M.; Ruan, H.-L. Org. Lett. 2017, 19, 1196.
      (g) Song, J.; Zhou, M.; Zhou, J.; Liang, J.-J.; Peng, X.-G.; Liu, J.; Ruan, H.-L. Org. Lett. 2018, 20, 2499.
      (h) Wang, X.; Fronczek, F. R.; Chen, J.; Liu, J.; Ferreira, D.; Li, S.; Hamann, M. T. Molecules 2017, 22, 1.
      (i) Zhou, M.; Liu, Y.; Song, J.; Peng, X.-G.; Cheng, Q.; Cao, H.; Xiang, M.; Ruan, H.-L. Org. Lett. 2016, 18, 4558.

  • 加载中
    1. [1]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    2. [2]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    3. [3]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    4. [4]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    5. [5]

      Huanhuan XIEYingnan SONGLei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281

    6. [6]

      Sirui Xin Jiayin Zhou Kin Shing Chan . Smelling Disease: E-nose. University Chemistry, 2024, 39(9): 141-145. doi: 10.3866/PKU.DXHX202309051

    7. [7]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    8. [8]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    9. [9]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    10. [10]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    11. [11]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    12. [12]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    13. [13]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    14. [14]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    15. [15]

      Xiaoyang Li Xiaowei Huang Yimeng Zhang Huan Liu Shao Jin Junpeng Zhuang . Comprehensive Chemical Experiments on the Synthesis of 1,3-Dibromo-5,5-Dimethylhydantoin and Its Application as a Brominating Reagent. University Chemistry, 2025, 40(7): 286-293. doi: 10.12461/PKU.DXHX202408035

    16. [16]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    17. [17]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    18. [18]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    19. [19]

      Lewang Yuan Yaoyao Peng Zong-Jie Guan Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086

    20. [20]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

Metrics
  • PDF Downloads(82)
  • Abstract views(6913)
  • HTML views(1840)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return