Citation: Wang Zheng, Yang Liu, Liu Huilan, Bao Wenhu, Tan Yingzhi, Wang Ming, Tang Zilong, He Weimin. Selective Synthesis of Quaternary Carbon Propargylamines from Amines, Alkynes, and Alkynes under Neat Condition[J]. Chinese Journal of Organic Chemistry, ;2018, 38(10): 2639-2647. doi: 10.6023/cjoc201805033 shu

Selective Synthesis of Quaternary Carbon Propargylamines from Amines, Alkynes, and Alkynes under Neat Condition

  • Corresponding author: He Weimin, weiminhe2016@yeah.net
  • Received Date: 16 May 2018
    Revised Date: 8 June 2018
    Available Online: 15 October 2018

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21877034)the National Natural Science Foundation of China 21877034

Figures(4)

  • An efficient and facile method has been developed for the synthesis of quaternary carbon propargylamines via a one-pot tandem reaction of amines, alkynes, and alkynes under neat condition. Both aliphatic and aromatic terminal alkynes are well compatible with the established reaction, with respect to aliphatic alkynes, AgOTf was used as catalyst for the Markovnikov amine-alkyne-alkyne coupling process. When aromatic alkynes were used as substrates, the reaction was promoted by CuBr2/Zn (OTf)2 co-catalytic system. This tandem reaction exhibits excellent atom efficiency and provides an attractive approach to a diverse range of quaternary carbon propargylamines.
  • 加载中
    1. [1]

      (a) Anastas, P. T.; Warner, J. C. Green Chemistry: Theory and Practice, Oxford University Press, New York, 2000.
      (b) Trost, B. M. Science 1991, 254, 1471.
      (c) Trost, B. M. Angew. Chem., Int. Ed. 1995, 34, 259.
      (d) Trost, B. M. Acc. Chem. Res. 2002, 35, 695.

    2. [2]

      (a) Müller, T. E.; Beller, M. Chem. Rev. 1998, 98, 675.
      (b) Hong, S.; Marks, T. J. Acc. Chem. Res. 2004, 37, 673.
      (c) Doye, S. Synlett 2004, 1653.
      (d) Roesky, P. W.; Müller, T. E. Angew. Chem., Int. Ed. 2003, 42, 2708.
      (e) Pohlki, F.; Doye, S. Chem. Soc. Rev. 2003, 32, 104.
      (f) Müller, T. E.; Hultzsch, K. C.; Yus, M.; Foubelo, F.; Tada, M. Chem. Rev. 2008, 108, 3795.

    3. [3]

      (a) Patil, N. T.; Yamamoto, Y. Chem. Rev. 2008, 108, 3395.
      (b) Mizushima, E.; Hayashi, T.; Tanaka, M. Org. Lett. 2003, 5, 3349.
      (c) Cui, H.; Wei, W.; Yang, D.; Zhang, J.; Xu, Z.; Wen, J.; Wang, H. RSC Adv. 2015, 5, 84657.
      (d) Huang, C.; Zeng, Y.; Cheng, H.; Hu, A.; Liu, L.; Xiao, Y.; Zhang, J. Org. Lett, 2017, 19, 4968.
      (e) Zhou, X.; Huang, C.; Zeng, Y.; Xiong, J.; Xiao, Y.; Zhang, J. Chem. Commun. 2017, 53, 1084.

    4. [4]

      (a) Liu, X. Y.; Che, C.-M. Angew. Chem., Int. Ed. 2008, 47, 3805.
      (b) Liu, X.-Y.; Che, C.-M. Angew. Chem., Int. Ed. 2009, 48, 2367.

    5. [5]

      Luo, Y.; Li, Z.; Li, C.-J. Org. Lett. 2005, 7, 2675.
       

    6. [6]

      (a) Zhou, L.; Shuai, Q.; Jiang, H. F.; Li, C.-J. Chem.-Eur. J. 2009, 15, 11668.
      (b) Zhou, L.; Bohle, D. S.; Jiang, H. F.; Li, C.-J. Synlett 2009, 937.

    7. [7]

      Han, J. B.; Xu, B.; Hammond, G. B. J. Am. Chem. Soc. 2010, 132, 916.

    8. [8]

      (a) Xie, L.; Wu, Y.; Yi, W.; Zhu, L.; Xiang, J.; He, W. J. Org. Chem. 2013, 78, 9190.
      (b) Li, L.; Xie, L.; Wang, F.; He, W.; Xiang, J. Chin. J. Org. Chem. 2014, 34, 1864.
      (c) Xie, L.; Yuan, R.; Wang, R.; Peng, Z.; Xiang, J.; He, W. Eur. J. Org. Chem. 2014, 2668.
      (d) Xiang, J.; Yuan, R.; Wang, R.; Yi, N.; Lu, L.; Zou, H.; He, W. J. Org. Chem. 2014, 79, 11378.
      (e) Xiang, J.; Yi, N.; Wang, R.; Lu, L.; Zou, H.; Pan, Y.; He, W. Tetrahedron 2015, 71, 694.
      (f) Yi, N.; Wang, R.; Zou, H.; He, W.; Fu, W.; He, W. J. Org. Chem. 2015, 80, 5023.
      (g) Zou, H.; He, W.; Dong, Q.; Wang, R.; Yi, N.; Jiang, J.; Pen, D.; He, W. Eur. J. Org. Chem. 2016, 116.
      (h) Li, W.; Yin, G.; Huang, L.; Xiao, Y.; Fu, Z.; Xin, X.; Liu, F.; Li, Z.; He, W. Green Chem. 2016, 18, 4879.
      (i) Wu, C.; Yang, P.; Fu, Z.; Peng, Y.; Wang, X.; Zhang, Z.; Liu, F.; Li, W.; Li, Z.; He, W. J. Org. Chem. 2016, 81, 10664.
      (j) Wu, C.; Xin, X.; Fu, Z.-M.; Xie, L.-Y.; Liu, K.-J.; Wang, Z.; Li, W.; Yuan, Z.-H.; He, W.-M. Green Chem. 2017, 19, 1983.
      (k) Wu, C.; Wang, Z.; Hu, Z.; Zeng, F.; Zhang, X.-Y.; Cao, Z.; Tang, Z.; He, W.-M.; Xu, X.-H., Org. Biomol. Chem. 2018, 16, 3177.
      (l) Wu, C.; Lu, L.-H.; Peng, A.-Z.; Jia, G.-K.; Peng, C.; Cao, Z.; Tang, Z.; He, W.-M.; Xu, X. Green Chem. 2018, 3683.

    9. [9]

      (a) Xie, L.-Y.; Duan, Y.; Lu, L.-H.; Li, Y.-J.; Peng, S.; Wu, C.; Liu, K.-J.; Wang, Z.; He, W.-M. ACS Sustainable Chem. Eng. 2017, 5, 10407.
      (b) Xie, L.-Y.; Peng, S.; Lu, L.-H.; Hu, J.; Bao, W.-H.; Zeng, F.; Tang, Z.; Xu, X.; He, W.-M. ACS Sustainable Chem. Eng. 2018, 6, 7989.
      (c) Liu, K.-J.; Fu, Y.-L.; Xie, L.-Y.; Wu, C.; He, W.-B.; Peng, S.; Wang, Z.; Bao, W.-H.; Cao, Z.; Xu, X.; He, W.-M. ACS Sustainable Chem. Eng. 2018, 6, 4916.
      (d) Tan, J.-X.; Guo, Y.; Zeng, F.; Chen, G.-R.; Xie, L.-Y.; He, W.-M. Chin. J. Org. Chem. 2018, 38, 1740.
      (e) Xie, L.-Y.; Li, Y.-J.; Qu, J.; Duan, Y.; Hu, J.; Liu, K.-J.; Cao, Z.; He, W.-M. Green Chem. 2017, 19, 5642.
      (f) Liu, K.-J.; Jiang, S.; Lu, L.-H.; Tang, L.-L.; Tang, S.-S.; Tang, H.-S.; Tang, Z.; He, W.-M.; Xu, X. Green Chem. 2018, 3038.
      (g) Xie, L.-Y.; Qu, J.; Peng, S.; Liu, K.-J.; Wang, Z.; Ding, M.-H.; Wang, Y.; Cao, Z.; He, W.-M. Green Chem. 2018, 20, 760.
      (h) Wu, C.; Wang, J.; Zhang, X.-Y.; Jia, G.-K.; Cao, Z.; Tang, Z.; Yu, X., Xu, X.-H.; He, W.-M. Org. Biomol. Chem. 2018, 5050.

    10. [10]

      (a) Kauffman, G. S.; Harris, G. D.; Dorow, R. L.; Stone, B. R. P.; Parsons, R. L. Jr., Pesti, J. A.; Magnus, N. A.; Fortunak, J. M.; Confalone, P. N.; Nugent, W. A. Org. Lett. 2000, 2, 3119.
      (b) Huffman, M. A.; Yasuda, N.; DeCamp, A. E.; Grabowski, E. J. J. J. Org. Chem. 1995, 60, 1590.
      (c) Nakamura, H.; Kamakura, T.; Ishikura, M.; Biellmann, J.-F. J. Am. Chem. Soc. 2004, 126, 5958.
      (d) Wen, J.; Wei, W.; Xue, S.; Yang, D.; Lou, Y.; Gao, C.; Wang, H. J. Org. Chem. 2015, 80, 4966.
      (e) Wei, W.; Cui, H.; Yang, D.; Yue, H.; He, C.; Zhang, Y.; Wang, H. Green Chem. 2017, 19, 5608.

    11. [11]

      (a) Kopka, I. E.; Fataftah, Z. A.; Rathke, M. W. J. Org. Chem. 1980, 45, 4616.
      (b) Imada, Y.; Yuassa, M.; Nakamura, I.; Murahashi, S. I.; J. Org. Chem. 1994, 59, 2282.
      (c) Czernecki, S.; Valery, J. M. J. Carbohydr. Chem. 1990, 9, 767.
      (d) Tubery, F.; Grierson, D. S.; Husson, H. P. Tetrahedron Lett. 1987, 28, 6457.
      (e) Jung, M. E.; Huang, A. Org. Lett. 2000, 2, 2659.

    12. [12]

      (a) Wei, C. M.; Li, C.-J. J. Am. Chem. Soc. 2002, 124, 5638.
      (b) Wei, C. M.; Li, C.-J. J. Am. Chem. Soc. 2003, 125, 9584.
      (c) Wei, C. M.; Li, Z. G.; Li, C.-J. Org. Lett. 2003, 5, 4473.
      (d) Wei, C. M.; Mague, J. T.; Li, C.-J. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 5749.
      (e) Gommermann, N.; Knochel, P. Chem.-Eur. J. 2006, 12, 4380.
      (f) Li, Z. P.; Li, C.-J. J. Am. Chem. Soc. 2004, 126, 11810.

    13. [13]

      (a) Liu, X.-Y.; Che, C.-M. Angew. Chem., Int. Ed. 2008, 47, 3805.
      (b) Pereshivko, O. P.; Peshkov, V. A.; Van der Eycken, E. V. Org. Lett. 2010, 12, 2638.
      (c) Aliaga, M. J.; Ramón, D. J.; Yus, M. Org. Biomol. Chem. 2010, 8, 43.
      (d) Biyikal, M.; Porta, M.; Roesky, P. W.; Blechert, S. Adv. Synth. Catal. 2010, 352, 1870.
      (e) Pierce, C. J.; Yoo, H.; Larsen C. H. Adv. Synth. Catal. 2013, 355, 3586.
      (f) Palchark, Z. L.; Lussier, D. J.; Pierce, C. J.; Yoo, H.; Larsen, C. H. Adv. Synth. Catal. 2015, 357, 539.

    14. [14]

      (a) Uchimaru, Y. Chem. Commun. 1999, 1133.
      (b) Pohlki, F.; Doye, S. Chem. Soc. Rev. 2003, 32, 104.
      (c) Müller, T. E.; Hultzsch, K. C.; Yus, M.; Foubelo, F.; Tada, M.; Chem. Rev. 2008, 108, 3795.

    15. [15]

      (a) Koradin, C.; Polborn, K.; Knochel, P. Angew. Chem. Int. Ed. 2002, 41, 2535.
      (b) Koradin, C.; Gommermann, N.; Polborn, K.; Knochel, P. Chem.-Eur. J. 2003, 9, 2797.
      (c) Li, Y.; Cao, X.; Liu, Y.; Wan, J-P. Org. Biomol. Chem. 2017, 15, 9585.
      (d) Shen, W-B.; Sun, Q.; Li, L.; Liu, X.; Zhou, B.; Yan, J-Z.; Lu, X.; Ye, L-W. Nat. Commun. 2017, 8, 1748.
      (e) Li, L.; Tan, T-D.; Zhang, Y-Q.; Liu, X.; Ye, L-W. Org. Biomol. Chem. 2017, 15, 8483.

    16. [16]

      (a) Alex, K.; Tillack, A.; Schwarz, N.; Beller, M. ChemSusChem 2008, 1, 333.
      (b) Biyikal, M.; Porta, M.; Roesky, P. W.; Blechert, S. Adv. Synth. Catal. 2010, 352, 1870.

    17. [17]

      (a) Aschwanden, P.; Frantz, D. E.; Carreira, E. M. Org. Lett. 2000, 2, 2331.
      (b) Lang, H.; Mansilla, N.; Rheinwald, G. Organometallics 2001, 20, 1592.

  • 加载中
    1. [1]

      Yu YaoJinqiang ZhangYantao WangKunsheng HuYangyang YangZhongshuai ZhuShuang ZhongHuayang ZhangShaobin WangXiaoguang Duan . Nitrogen-rich carbon for catalytic activation of peroxymonosulfate towards green synthesis. Chinese Chemical Letters, 2024, 35(11): 109633-. doi: 10.1016/j.cclet.2024.109633

    2. [2]

      Rui ChengTingting ZhangXin HuangJian Yu . Facile synthesis of high-brightness green-emitting carbon dots with narrow bandwidth towards backlight display. Chinese Chemical Letters, 2024, 35(5): 108763-. doi: 10.1016/j.cclet.2023.108763

    3. [3]

      Xiang HuangDongzhen XuYang LiuXia HuangYangfan WuDongmei FangBing XiaWei JiaoJian LiaoMin Wang . Asymmetric synthesis of difluorinated α-quaternary amino acids (DFAAs) via Cu-catalyzed difluorobenzylation of aldimine esters. Chinese Chemical Letters, 2024, 35(12): 109665-. doi: 10.1016/j.cclet.2024.109665

    4. [4]

      Jing LIANGQian WANGJunfeng BAI . Synthesis and structures of cdq-topological quaternary and (4, 4, 8)-c topological quinary Zn-MOFs with both oxalic acid and triazole ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2186-2192. doi: 10.11862/CJIC.20240177

    5. [5]

      Tengteng WangYiming JuYao ChengHaiyang WangDejin Zang . Recent advances in polyoxometalates based strategies for green synthesis of drugs. Chinese Chemical Letters, 2025, 36(5): 109871-. doi: 10.1016/j.cclet.2024.109871

    6. [6]

      Weidan MengYanbo ZhouYi Zhou . Green innovation unleashed: Harnessing tungsten-based nanomaterials for catalyzing solar-driven carbon dioxide conversion. Chinese Chemical Letters, 2025, 36(2): 109961-. doi: 10.1016/j.cclet.2024.109961

    7. [7]

      Huihui LIUBaichuan ZHAOChuanhui WANGZhi WANGCongyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059

    8. [8]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    9. [9]

      Quan ZhangShunjie XingJingqian HanLi FengJianchun LiZhaosheng QianJin Zhou . Organic pollutant sensing for human health based on carbon dots. Chinese Chemical Letters, 2025, 36(1): 110117-. doi: 10.1016/j.cclet.2024.110117

    10. [10]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    11. [11]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    12. [12]

      Fabrice Nelly HabarugiraDucheng YaoWei MiaoChengcheng ChuZhong ChenShun Mao . Synergy of sodium doping and nitrogen defects in carbon nitride for promoted photocatalytic synthesis of hydrogen peroxide. Chinese Chemical Letters, 2024, 35(8): 109886-. doi: 10.1016/j.cclet.2024.109886

    13. [13]

      Bohan ZhangBingzhe WangGuichuan XingZikang TangSongnan Qu . Regulation of the multi-emission centers in carbon dots via a bottom-up synthesis approach. Chinese Chemical Letters, 2024, 35(9): 109358-. doi: 10.1016/j.cclet.2023.109358

    14. [14]

      Yuetong GaoTong MuXinyue HuYang PangChengji Zhao . Facile synthesis of all-carbon fluorinated backbone polymers containing sulfide linkage as proton exchange membranes for fuel cells. Chinese Chemical Letters, 2025, 36(6): 110763-. doi: 10.1016/j.cclet.2024.110763

    15. [15]

      Jian Yang Guang Yang Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267

    16. [16]

      Ting ShiZiyang SongYaokang LvDazhang ZhuLing MiaoLihua GanMingxian Liu . Hierarchical porous carbon guided by constructing organic-inorganic interpenetrating polymer networks to facilitate performance of zinc hybrid supercapacitors. Chinese Chemical Letters, 2025, 36(1): 109559-. doi: 10.1016/j.cclet.2024.109559

    17. [17]

      Mengmeng AoJian WeiChuan-Shu HeHeng ZhangZhaokun XiongYonghui SongBo Lai . Insight into the activation of peroxymonosulfate by N-doped copper-based carbon for efficient degradation of organic pollutants: Synergy of nonradicals. Chinese Chemical Letters, 2025, 36(1): 109882-. doi: 10.1016/j.cclet.2024.109882

    18. [18]

      Yuling MaDongqing LiuTao ZhangChengjie SongDongmei LiuPeizhi WangWei Wang . Bimetallic composite carbon fiber with persulfate mediation for intercepting volatile organic compounds during solar interfacial evaporation. Chinese Chemical Letters, 2025, 36(3): 110000-. doi: 10.1016/j.cclet.2024.110000

    19. [19]

      Ya-Ling LiJia-Wei KeYue LiuDong-Mei YaoJing-Dong ZhangYou-Cai XiaoFen-Er Chen . Asymmetric conjugated addition of aryl Grignard reagents for the construction of chromanones bearing quaternary stereogenic centers in batch and flow. Chinese Chemical Letters, 2025, 36(6): 110377-. doi: 10.1016/j.cclet.2024.110377

    20. [20]

      Jia-Cheng HouWei CaiHong-Tao JiLi-Juan OuWei-Min He . Recent advances in semi-heterogenous photocatalysis in organic synthesis. Chinese Chemical Letters, 2025, 36(2): 110469-. doi: 10.1016/j.cclet.2024.110469

Metrics
  • PDF Downloads(2)
  • Abstract views(825)
  • HTML views(89)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return