Citation: Wang Huabin, Fu Qiang, Zhang Zhijie, Gao Ming, Ji Jianxin, Yi Dong. Hydrochloric Acid-Promoted Copper/Iron-Cocatalyzed Deesterifica-tive Oxyphosphorylation of 2-Substituted Acrylates with H-Phosphine Oxides[J]. Chinese Journal of Organic Chemistry, ;2018, 38(8): 1977-1984. doi: 10.6023/cjoc201805027 shu

Hydrochloric Acid-Promoted Copper/Iron-Cocatalyzed Deesterifica-tive Oxyphosphorylation of 2-Substituted Acrylates with H-Phosphine Oxides

  • Corresponding author: Yi Dong, yidong@swmu.edu.cn
  • Received Date: 11 May 2018
    Revised Date: 30 May 2018
    Available Online: 31 August 2018

    Fund Project: the Strategic Biological Resources Service Network Program of Chinese Academy of Sciences ZSTH-001the National Natural Science Foundation of China 21572217Project supported by the National Natural Science Foundation of China (No. 21572217), the Strategic Biological Resources Service Network Program of Chinese Academy of Sciences (No. ZSTH-001) and the Scientific Research Foundation of Southwest Medical University (No. 2017-ZRZD-020)the Scientific Research Foundation of Southwest Medical University 2017-ZRZD-020

Figures(3)

  • An unprecedented method for the transformation of 2-substituted acrylates into β-ketophosphine oxides has successfully been developed via hydrochloric acid-promoted copper/iron-cocatalyzed deesterificative oxyphosphorylation under dioxygen atmosphere, simultaneously inhibiting the formation of the preceding hydroxyphosphorylation products. Through this convenient and practical process, a library of structurally diverse β-ketophosphine oxides could be selectively and effectively obtained with broad substrate scope and good functional group tolerance under mild conditions, accompanied by chemoselective cleavage of C(sp2)-C(C=O) bonds.
  • 加载中
    1. [1]

      (a) Wadsworth, W. S. ; Emmons, W. D. J. Am. Chem. Soc. 1961, 83, 1733.
      (b) Boutagy, J. ; Thomas, R. Chem. Rev. 1974, 74, 87.
      (c) Maryanoff, B. E. ; Reitz, A. B. Chem. Rev. 1989, 89, 863.
      (d) Boesen, T. ; Fox, D. J. ; Galloway, W. ; Pedersen, D. S. ; Tyzack, C. R. ; Warren, S. Org. Biomol. Chem. 2005, 3, 630.

    2. [2]

      (a) Lestas, C. N. ; Truter, M. R. J. Chem. Soc. A 1971, 738.
      (b) Babecki, R. ; Platt, A. W. G. ; Fawcett, J. J. Chem. Soc., Dalton Trans. 1992, 675.
      (c) McManus, H. A. ; Guiry, P. J. Chem. Rev. 2004, 104, 4151.

    3. [3]

      (a) McCabe, D. J. ; Duesler, E. N. ; Paine, R. T. Inorg. Chem. 1985, 24, 4626.
      (b) Braunstein, P. ; Cea, S. C. ; Decian, A. ; Fischer, J. Inorg. Chem. 1992, 31, 4203.
      (c) Gorin, D. J. ; Sherry, B. D. ; Toste, F. D. Chem. Rev. 2008, 108, 3351.
      (d) Birkholz, M. N. ; Freixa, Z. ; van Leeuwen, P. W. N. M. Chem. Soc. Rev. 2009, 38, 1099.
      (e) Mitchell, L. A. ; Holliday, B. J. ACS Macro Lett. 2016, 5, 1100.

    4. [4]

      (a) Wei, W. ; Ji, J. X. Angew. Chem., Int. Ed. 2011, 50, 9097.
      (b) Zhang, G. Y. ; Li, C. K. ; Li, D. P. ; Zeng, R. S. ; Shoberu, A. ; Zou, J. P. Tetrahedron 2016, 72, 2972.
      (c) Gu, J. ; Cai, C. Org. Biomol. Chem. 2017, 15, 4226.

    5. [5]

      (a) Chen, X. ; Li, X. ; Chen, X. L. ; Qu, L. B. ; Chen, J. Y. ; Sun, K. ; Liu, Z. D. ; Bi, W. Z. ; Xia, Y. Y. ; Wu, H. T. ; Zhao, Y. F. Chem. Commun. 2015, 51, 3846.
      (b) Gutierrez, V. ; Mascaró, E. ; Alonso, F. ; Moglie, Y. ; Radivoy, G. RSC Adv. 2015, 5, 65739.
      (c) Yi, N. ; Wang, R. ; Zou, H. ; He, W. ; Fu, W. ; He, W. J. Org. Chem. 2015, 80, 5023.
      (d) Zhou, M. ; Chen, M. ; Zhou, Y. ; Yang, K. ; Su, J. ; Du, J. ; Song, Q. Org. Lett. 2015, 17, 1786.
      (e) Zhong, W. W. ; Zhang, Q. ; Li, M. S. Synth. Commun. 2016, 46, 1377.
      (f) Bu, M. J. ; Lu, G. P. ; Cai, C. Catal. Sci. Technol. 2016, 6, 413.
      (g) Peng, P. ; Lu, Q. ; Peng, L. ; Liu, C. ; Wang, G. ; Lei, A. Chem. Commun. 2016, 52, 12338.

    6. [6]

      (a) Zeng, Y. F. ; Tan, D. H. ; Lv, W. X. ; Li, Q. J. ; Wang, H. G. Eur. J. Org. Chem. 2015, 2015, 4335.
      (b) Zhang, P. ; Zhang, L. ; Gao, Y. ; Xu, J. ; Fang, H. ; Tang, G. ; Zhao, Y. Chem. Commun. 2015, 51, 7839.
      (c) Zhou, M. ; Chen, M. ; Zhou, Y. ; Yang, K. ; Su, J. ; Du, J. ; Song, Q. Org. Lett. 2015, 17, 1786.
      (d) Chen, X. ; Li, X. ; Qu, C. ; Qu, L. ; Bi, W. ; Sun, K. ; Zhao, Y. Tetrahedron 2017, 73, 2439.

    7. [7]

      Zhou, Y.; Zhou, M.; Chen, M.; Su, J.; Du, J.; Song, Q. RSC Adv. 2015, 5, 103977.  doi: 10.1039/C5RA23950H

    8. [8]

      (a) Zhou, Y. ; Rao, C. ; Mai, S. ; Song, Q. J. Org. Chem. 2016, 81, 2027.
      (b) Li, L. ; Huang, W. ; Chen, L. ; Dong, J. ; Ma, X. ; Peng, Y. Angew. Chem., Int. Ed. 2017, 56, 10539.
      (c) Zhou, P. ; Hu, B. ; Li, L. ; Rao, K. ; Yang, J. ; Yu, F. J. Org. Chem. 2017, 82, 13268.

    9. [9]

      Tang, P.; Zhang, C.; Chen, E.; Chen, B.; Chen, W.; Yu, Y. Tetrahedron Lett. 2017, 58, 2157.  doi: 10.1016/j.tetlet.2017.04.069

    10. [10]

      (a) Ke, J. ; Tang, Y. ; Yi, H. ; Li, Y. ; Cheng, Y. ; Liu, C. ; Lei, A. Angew. Chem., Int. Ed. 2015, 54, 6604.
      (b) Fu, Q. ; Yi, D. ; Zhang, Z. J. ; Liang, W. ; Chen, S. Y. ; Yang, L. ; Zhang, Q. ; Ji, J. X. ; Wei, W. Org. Chem. Front. 2017, 4, 1385.
      (c) Liang, W. ; Zhang, Q. ; Yi, D. ; Fu, Q. ; Chen, S. Y. ; Yang, L. ; Du, F. T. ; Ji, J. X. ; Wei, W. Chin. J. Chem. 2017, 35, 1378.
      (d) Zhang, Z. J. ; Yi, D. ; Fu, Q. ; Liang, W. ; Chen, S. Y. ; Yang, L. ; Du, F. T. ; Ji, J. X. ; Wei, W. Tetrahedron Lett. 2017, 58, 2417.

    11. [11]

      (a) Zong, Z. ; Lu, S. ; Wang, W. ; Li, Z. Tetrahedron Lett. 2015, 56, 6719.
      (b) Zhang, P. ; Zhang, L. ; Gao, Y. ; Xu, J. ; Fang, H. ; Tang, G. ; Zhao, Y. Chem. Commun. 2015, 51, 7839.
      (c) Lee, M. ; Chen, Y. H. ; Hung, T. H. ; Chang, W. ; Yan, W. C. ; Leow, D. RSC Adv. 2015, 5, 86402.
      (d) Nawrat, C. C. ; Jamison, C. R. ; Slutskyy, Y. ; MacMillan, D. W. C. ; Overman, L. E. J. Am. Chem. Soc. 2015, 137, 11270.
      (e) Xi, H. ; Deng, B. ; Zong, Z. ; Lu, S. ; Li, Z. Org. Lett. 2015, 17, 1180.
      (f) Yuan, Z. ; Wang, H. Y. ; Mu, X. ; Chen, P. ; Guo, Y. L. ; Liu, G. J. Am. Chem. Soc. 2015, 137, 2468.
      (g) Zong, Z. ; Bai, X. ; Lu, S. ; Li, Z. Tetrahedron Lett. 2016, 57, 3827.
      (h) Caputo, J. A. ; Frenette, L. C. ; Zhao, N. ; Sowers, K. L. ; Krauss, T. D. ; Weix, D. J. J. Am. Chem. Soc. 2017, 139, 4250.
      (i) Gualandi, A. ; Matteucci, E. ; Monti, F. ; Baschieri, A. ; Ar-maroli, N. ; Sambri, L. ; Cozzi, P. G. Chem. Sci. 2017, 8, 1613.
      (j) Gualandi, A. ; Mazzarella, D. ; Ortega-Martínez, A. ; Mengozzi, L. ; Calcinelli, F. ; Matteucci, E. ; Monti, F. ; Armaroli, N. ; Sambri, L. ; Cozzi, P. G. ACS. Catal. 2017, 7, 5357.
      (k) Yi, D. ; Fu, Q. ; Chen, S. Y. ; Gao, M. ; Yang, L. ; Zhang, Z. J. ; Liang, W. ; Zhang, Q. ; Ji, J. X. ; Wei, W. Tetrahedron Lett. 2017, 58, 2058.

    12. [12]

    13. [13]

      (a) Li, M. M. ; Zhang, Q. ; Yue, H. L. ; Ma, L. ; Ji, J. X. Tetrahedron Lett. 2012, 53, 317.
      (b) Yue, H. L. ; Ma, L. ; Ji, J. X. Synth. Commun. 2013, 43, 600.
      (c) Yan, X. W. ; Zhang, Q. ; Wei, W. ; Ji, J. X. Tetrahedron Lett. 2014, 55, 3750.
      (d) Yang, Y. R. ; Zhang, Q. ; Du, F. T. ; Ji, J. X. Tetrahedron 2015, 71, 4304.
      (e) Li, M. S. ; Zhang, Q. ; Hu, D. Y. ; Zhong, W. W. ; Cheng, M. ; Ji, J. X. ; Wei, W. Tetrahedron Lett. 2016, 57, 2642.
      (f) Hu, D. Y. ; Li, M. S. ; Zhong, W. W. ; Ji, J. X. ; Zhu, J. ; Wei, W. ; Zhang, Q. ; Cheng, M. Chin. Chem. Lett. 2016, 27, 1691.

    14. [14]

      (a) Hirano, K. ; Iwahama, T. ; Sakaguchi, S. ; Ishii, Y. Chem. Commun. 2000, 2457.
      (b) Wang, H. ; Wang, Y. ; Peng, C. ; Zhang, J. ; Zhu, Q. J. Am. Chem. Soc. 2010, 132, 13217.
      (c) Li, J. S. ; Yang, Q. ; Yang, F. ; Chen, G. Q. ; Li, Z. W. ; Kuang, Y. J. ; Zhang, W. J. ; Huang, P. M. Org. Biomol. Chem. 2017, 16, 140.
      (d) Kumar, P. ; Sharma, A. K. ; Guntreddi, T. ; Singh, R. ; Singh, K. N. Org. Lett. 2018, 20, 744.

  • 加载中
    1. [1]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    2. [2]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    3. [3]

      Ling FangSha WangShun LuFengjun YinYujie DaiLin ChangHong Liu . Efficient electroreduction of nitrate via enriched active phases on copper-cobalt oxides. Chinese Chemical Letters, 2024, 35(4): 108864-. doi: 10.1016/j.cclet.2023.108864

    4. [4]

      Ao SunZipeng LiShuchun LiXiangbao MengZhongtang LiZhongjun Li . Stereoselective synthesis of α-3-deoxy-D-manno-oct-2-ulosonic acid (α-Kdo) derivatives using a C3-p-tolylthio-substituted Kdo fluoride donor. Chinese Chemical Letters, 2025, 36(3): 109972-. doi: 10.1016/j.cclet.2024.109972

    5. [5]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    6. [6]

      Guangchang YangShenglong YangJinlian YuYishun XieChunlei TanFeiyan LaiQianqian JinHongqiang WangXiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722

    7. [7]

      Haitao YinLiang MengLi LiJiamu XiaoLongrui LiangNannan HuangYansong ShiAngang ZhaoJingwen Hou . Polydopamine-modified biochar supported polylactic acid and zero-valent iron affects the functional microbial community structure for 1,1,1-trichloroethane removal in simulated groundwater. Chinese Chemical Letters, 2025, 36(1): 110313-. doi: 10.1016/j.cclet.2024.110313

    8. [8]

      Zhaodong WANGIn situ synthesis, crystal structure, and magnetic characterization of a trinuclear copper complex based on a multi-substituted imidazo[1,5-a]pyrazine scaffold. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 597-604. doi: 10.11862/CJIC.20240268

    9. [9]

      Xubin QianLei XuXu GeZhun LiuCheng FangJianbing WangJunfeng Niu . Can perfluorooctanoic acid be effectively degraded using β-PbO2 reactive electrochemical membrane?. Chinese Chemical Letters, 2024, 35(7): 109218-. doi: 10.1016/j.cclet.2023.109218

    10. [10]

      Di Wang Qing-Song Chen Yi-Ran Lin Yun-Xin Hou Wei Han Juan Yang Xin Li Zhen-Hai Wen . Tuning strategies and electrolyzer design for Bi-based nanomaterials towards efficient CO2 reduction to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(8): 100346-100346. doi: 10.1016/j.cjsc.2024.100346

    11. [11]

      Jingtai BiYupeng ChengMengmeng SunXiaofu GuoShizhao WangYingying Zhao . Efficient and selective photocatalytic nitrite reduction to N2 through CO2 anion radical by eco-friendly tartaric acid activation. Chinese Chemical Letters, 2024, 35(11): 109639-. doi: 10.1016/j.cclet.2024.109639

    12. [12]

      Yuhan Wu Qing Zhao Zhijie Wang . Layered vanadium oxides: Promising cathode materials for calcium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(5): 100271-100271. doi: 10.1016/j.cjsc.2024.100271

    13. [13]

      Wenxuan YangLong ShangXiaomeng LiuSihan ZhangHaixia LiZhenhua YanJun Chen . Ultrafast synthesis of nanocrystalline spinel oxides by Joule-heating method. Chinese Chemical Letters, 2024, 35(11): 109501-. doi: 10.1016/j.cclet.2024.109501

    14. [14]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    15. [15]

      Luyan ShiKe ZhuYuting YangQinrui LiangQimin PengShuqing ZhouTayirjan Taylor IsimjanXiulin Yang . Phytic acid-derivative Co2B-CoPOx coralloidal structure with delicate boron vacancy for enhanced hydrogen generation from sodium borohydride. Chinese Chemical Letters, 2024, 35(4): 109222-. doi: 10.1016/j.cclet.2023.109222

    16. [16]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    17. [17]

      Yuexiang LiuXiangqiao YangTong LinGuantian YangXiaoyong XuBubing ZengZhong LiWeiping ZhuXuhong Qian . Efficient continuous synthesis of 2-[3-(trifluoromethyl)phenyl]malonic acid, a key intermediate of Triflumezopyrim, coupling with esterification-condensation-hydrolysis. Chinese Chemical Letters, 2025, 36(1): 109747-. doi: 10.1016/j.cclet.2024.109747

    18. [18]

      Kai WangYun WangLihang WangZhuhai LiXi YuXuanhe YouDiwei WuYueming SongJiancheng ZengZongke ZhouShishu HuangYunfeng Lin . Therapeutic siRNA targeting CC chemokine receptor 2 loaded with tetrahedral framework nucleic acid alleviates neuropathic pain by regulating microglial polarization. Chinese Chemical Letters, 2025, 36(3): 109868-. doi: 10.1016/j.cclet.2024.109868

    19. [19]

      Shiqi XuZi YeShuang ShangFengge WangHuan ZhangLianguo ChenHao LinChen ChenFang HuaChong-Jing Zhang . Pairs of thiol-substituted 1,2,4-triazole-based isomeric covalent inhibitors with tunable reactivity and selectivity. Chinese Chemical Letters, 2024, 35(7): 109034-. doi: 10.1016/j.cclet.2023.109034

    20. [20]

      Jaeyong AhnZhenping LiZhiwei WangKe GaoHuagui ZhuoWanuk ChoiGang ChangXiaobo ShangJoon Hak Oh . Surface doping effect on the optoelectronic performance of 2D organic crystals based on cyano-substituted perylene diimides. Chinese Chemical Letters, 2024, 35(9): 109777-. doi: 10.1016/j.cclet.2024.109777

Metrics
  • PDF Downloads(3)
  • Abstract views(1025)
  • HTML views(102)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return