Citation: Zhang Yong, Yang hongzhen, Yu Xinling, Cheng Xu, Li Weijian, Guo Lingmei, Hai Li, Guo Li, Wu Yong. Room Temperature Ru(Ⅲ)-Catalyzed ortho-Hydroxymethylation of Arenes[J]. Chinese Journal of Organic Chemistry, ;2018, 38(12): 3211-3218. doi: 10.6023/cjoc201805022 shu

Room Temperature Ru(Ⅲ)-Catalyzed ortho-Hydroxymethylation of Arenes

  • Corresponding author: Guo Li, guoli@scu.edu.cn Wu Yong, wyong@scu.edu.cn
  • Received Date: 9 May 2018
    Revised Date: 31 July 2018
    Available Online: 5 December 2018

    Fund Project: the National Natural Science Foundation of China 81573286Project supported by the National Natural Science Foundation of China (Nos. 81373259, 81573286, 81602954)the National Natural Science Foundation of China 81602954the National Natural Science Foundation of China 81373259

Figures(2)

  • Direct synthesis of the hydroxymethylated arene derivatives via ruthenium(Ⅲ)-catalyzed nitrogen atom directed C-H activation is described. The reaction proceeds smoothly at room temperature and generates the corresponding products in moderate to excellent yields. Meanwhile, it has a broad substrate scope and opens up an attractive avenue for the application of direct hydroxymethylation in the synthesis of biologically active compounds.
  • 加载中
    1. [1]

      (a) Collin, D. T.; Hartley, D.; Jack, D.; Lunts, L. H.; Press, J. C.; Ritchie, A. C.; Toon, P. J. Med. Chem. 1970, 13, 674.
      (b) Schachter, E. N. Drugs Today 2010, 46, 911.
      (c) Gomelsky, A.; Dmochowski, R. R. Drugs Today 2010, 46, 81.
      (d) Filho, R. P.; de Souza Menezes, C. M.; Pinto, P. L.; Paula, G. A.; Brandt, C. A.; da Silveira, M. A. Bioorg. Med. Chem. 2007, 15, 1229.
      (e) Zhang, J. S.; Zhu, D. Y.; Hong, S. H. Phytochemistry 1995, 39, 435.

    2. [2]

      Select example: Bouveault, L. Bull. Soc. Chim. Fr. 1903, 29, 1051.

    3. [3]

      Select example: Mettler, C. Ber. Dtsch. Chem. Ges. 1905, 38, 1745.

    4. [4]

      (a) Vavon, G. Anal. Chim. 1914, 1, 144.
      (b) Raber, D. J.; Guida, W. C.; Shoenberger, D. C. Tetrahedron Lett. 1981, 22, 4077.

    5. [5]

      (a) Nystrom, R. F.; Chaikin, S. W.; Brown, W. G. J. Am. Chem. Soc. 1949, 71, 3245.
      (b) Santaniello, E. J. Org. Chem. 1981, 46, 4584.
      (c) Brown, H. C.; Choi, Y. M. Synthesis 1981, 439.

    6. [6]

      (a) Cardillo, G.; Orena, M.; Porzi, G.; Sandri, S. Synthesis 1981, 793.
      (b) Chemla, F.; Normant, J. Tetrahedron Lett. 1995, 36, 3157.
      (c) Hu, Y. L.; Jiang, H.; Zhu, J.; Lu, M. New J. Chem. 2011, 35, 292.

    7. [7]

      (a) Raber, D. J.; Guida, W. C. J. Org. Chem. 1976, 41, 690.
      (b) Santaniello, E.; Fiecchi, A.; Manzocchi, A.; Ferraboschi, P. J. Org. Chem. 1983, 48, 3074.

    8. [8]

      Flippin, L. A.; Gallagher, D. W.; Jalali-Araghi, K. J. Org. Chem. 1989, 54, 1430.  doi: 10.1021/jo00267a035

    9. [9]

      (a) Kamochi, Y.; Kudo, T. Chem. Lett. 1993, 9, 1495.
      (b) Fisher, G. B. J. Org. Chem. 1994, 59, 6378.

    10. [10]

      Kamitanaka, T.; Yamamoto K.; Matsuda, T. Tetrahedron 2008, 64, 5699.  doi: 10.1016/j.tet.2008.04.029

    11. [11]

      (a) Wu, Y. Q. Tetrahedron Lett. 2000, 41, 2847.
      (b) Reddy, M. A. New. J. Chem. 2001, 25, 359.
      (c) Cadot, C. Tetrahedron Lett. 2002, 43, 1839.
      (d) Markovic, D.; Vogel, P. Org. Lett. 2004, 6, 2693.

    12. [12]

      Molander, G. A.; Cavalcanti, L. N. J. Org. Chem. 2011, 76, 623.  doi: 10.1021/jo102208d

    13. [13]

      (a) Kawamoto, T. Org. Lett. 2013, 15, 2144.
      (b) Molla, R. A. Green Chem. 2016, 18, 4649.

    14. [14]

      Khusnutdinova, J. R.; Milstein, Y. B-D. Angew. Chem., Int. Ed. 2013, 52, 6269.  doi: 10.1002/anie.201301000

    15. [15]

      Hydroxymethylation of carbonyl substrates see: (a) Ito, Y.; Sawamura, M.; Shirakawa, E.; Hayashizaki, K.; Hayashi, T. Tetrahedron Lett. 1988, 29, 235.
      (b) Torii, H.; Nakadai, M.; Ishihara, K.; Saito S.; Yamamoto, H. Angew. Chem., Int. Ed. 2004, 43, 1983.
      (c) Kuhl N.; Glorius, F. Chem. Commun. 2011, 47, 573.
      (d) Shirakawa, S.; Ota, K.; Terao S. J.; Maruoka, K. Org. Biomol. Chem. 2012, 10, 5753.

    16. [16]

      Reductive hydroxymethylation of allenes, alkenes and alkynes see: (a) Ngai, M.-Y.; Skucas, E.; Krische, M. J. Org. Lett. 2008, 10, 2705.
      (b) Sam, B.; Montgomery, T. P.; Krische, M. J. Org. Lett. 2013, 15, 3790.
      (c) Kopfer, A.; Sam, B.; Breit B.; Krische, M. J. Chem. Sci. 2013, 4, 1876.
      (d) Bausch, C. C.; Patman, R. L.; Breit, B.; Krische, M. J. Angew. Chem., Int. Ed. 2011, 50, 5687.

    17. [17]

      Hydromethoxylation of boronic acids see: (a) Yamamoto, T.; Zhumagazin, A.; Furusawa, T.; Tanaka, R.; Yamakawa, T.; Oe Y.; Ohta, T. Adv. Synth. Catal. 2014, 356, 3525.
      (b) Kawamoto, T.; Fukuyama, T.; Ryz, I. J. Am. Chem. Soc. 2012, 134, 875.
      (c) Kawamoto, T.; Ryu, I. Chimia 2012, 66, 372.

    18. [18]

      (a) Maruyama, K.; Kubo, K.; Toda, Y.; Kawase, K.; Mashino, T.; Nishinaga, A. Tetrahedron Lett. 1995, 36, 5609.
      (b) Khan, A.; Zheng, R.; Kan, Y.; Ye, J.; Xing J.; Zhang, Y. J. Angew. Chem., Int. Ed. 2014, 53, 6439.
      (c) Xie, Y.; Hu, J.; Wang, Y.; Xia, C.; Huang, H. J. Am. Chem. Soc. 2012, 134, 20613.
      (d) Zhang, G.; Gao, B.; Huang, H. Angew. Chem., Int. Ed. 2015, 54, 7657-7661.

    19. [19]

      (a) Morimoto, T.; Fujioka, M.; Fuji, K.; Tsutsumi K.; Kakiuchi, K. J. Organomet. Chem. 2007, 692, 625.
      (b) Liu, Q.; Wu, L.; Jackstell, R.; Beller, M. ChemCatChem 2014, 6, 2805.
      (c) Kusumoto, S.; Tatsuki T.; Nozaki, K. Angew. Chem., Int. Ed. 2015, 54, 8458.

    20. [20]

      (a) Pyo, A.; Kim, S.; Kumar, M. R.; Byeun, A.; Eom, M. S.; Han, M. S.; Lee, S. Tetrahedron Lett. 2013, 54, 5207.
      (b) Heim, L. E.; Schloer, N. E.; Choi, J.-H.; Prechtl, M. H. G. Nat. Commun. 2014, 5, 3621.
      (c) Suenobu, T.; Isaka, Y.; Shibata, S.; Fukuzumi, S. Chem. Commun. 2015, 51, 1670.

    21. [21]

      (a) Saidi, O.; Bamford, M. J.; Blacker, A. J.; Lynch, J.; Marsden, S. P.; Plucinski, P.; Watson, R. J.; Williams, J. M. J. Tetrahedron Lett. 2010, 51, 5804.
      (b) Zhang, J.; Hong, S. H. Org. Lett. 2012, 14, 4646.
      (c) Lee, H.; Kang, B.; Lee, S.-I.; Hong, S. H. Synlett 2015, 1077.

    22. [22]

      (a) Watanabe, Y.; Yamamoto, M.; Mitsudo, T.-A.; Takegami, Y. Tetrahedron Lett. 1978, 19, 1289.
      (b) Man, N. Y. T.; Li, W.; Stewart, S. G.; Wu, X.-F. Chimia 2015, 69, 345.

    23. [23]

      Li, W. F.; Wu, X. F. Adv. Synth. Catal. 2015, 357, 3393.  doi: 10.1002/adsc.201500753

    24. [24]

      Cheng, X. F.; Wang, H. M.; Xiao, F. H.; Deng, G. J. Green Chem. 2016, 18, 5773.  doi: 10.1039/C6GC02319C

    25. [25]

      Zhang, G. F.; Li, Y.; Xie, X. Q.; Ding, C. R. Org. Lett. 2017, 19, 1216.  doi: 10.1021/acs.orglett.7b00183

    26. [26]

      Wu, Y. X.; Zhou, B. ACS Catal. 2017, 7, 2213.  doi: 10.1021/acscatal.7b00078

    27. [27]

      Zhang, Y.; Yang, Z. Z.; Guo, L. M.; Li, W. J.; Cheng, X.; Wang, X. L.; Wang, Q. T.; Hai, L.; Wu, Y. Org. Chem. Front. 2018, 5, 1604.  doi: 10.1039/C8QO00193F

  • 加载中
    1. [1]

      Wei-Bin LiXiao-Chao HuangPei LiuJie KongGuo-Ping Yang . Recent advances in directing group assisted transition metal catalyzed para-selective C-H functionalization. Chinese Chemical Letters, 2025, 36(6): 110543-. doi: 10.1016/j.cclet.2024.110543

    2. [2]

      Chao ChenWenwen YuGuangen HuangXuelian RenXiangli ChenYixin LiShenggui LiangMengmeng XuMingyue ZhengYaxi YangHe HuangWei TangBing Zhou . Asymmetric macrocyclization enabled by Rh(Ⅲ)-catalyzed CH activation: Enantioenriched macrocyclic inhibitor of Zika virus infection. Chinese Chemical Letters, 2024, 35(11): 109574-. doi: 10.1016/j.cclet.2024.109574

    3. [3]

      Dian-Xue Ma Yu-Wu Zhong . Achieving highly-efficient room-temperature phosphorescence with a nylon matrix. Chinese Journal of Structural Chemistry, 2024, 43(9): 100391-100391. doi: 10.1016/j.cjsc.2024.100391

    4. [4]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    5. [5]

      Xin LiJia-Min LuBo LiChen ZhaoBei-Bei YangLi Li . Chiroptical sensing for remote chiral amines via a C–H activation reaction. Chinese Chemical Letters, 2025, 36(5): 110310-. doi: 10.1016/j.cclet.2024.110310

    6. [6]

      Kun Zhang Ni Dan Dan-Dan Ren Ruo-Yu Zhang Xiaoyan Lu Ya-Pan Wu Li-Lei Zhang Hong-Ru Fu Dong-Sheng Li . A small D-A molecule with highly heat-resisting room temperature phosphorescence for white emission and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(3): 100244-100244. doi: 10.1016/j.cjsc.2024.100244

    7. [7]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    8. [8]

      Jiayin ZhouDepeng LiuLongqiang LiMin QiGuangqiang YinTao Chen . Responsive organic room-temperature phosphorescence materials for spatial-time-resolved anti-counterfeiting. Chinese Chemical Letters, 2024, 35(11): 109929-. doi: 10.1016/j.cclet.2024.109929

    9. [9]

      Shuai ZhuMingjie ChenHaichao ShenHanming DingWenbo LiJunliang Zhang . Palladium/Xu-Phos-catalyzed enantioselective arylalkoxylation reaction of γ-hydroxyalkenes at room temperature. Chinese Chemical Letters, 2024, 35(11): 109879-. doi: 10.1016/j.cclet.2024.109879

    10. [10]

      Jianmei Guo Yupeng Zhao Lei Ma Yongtao Wang . Ultra-long room temperature phosphorescence, intrinsic mechanisms and application based on host-guest doping systems. Chinese Journal of Structural Chemistry, 2024, 43(9): 100335-100335. doi: 10.1016/j.cjsc.2024.100335

    11. [11]

      Zeyin ChenJiaju ShiYusheng ZhouPeng ZhangGuodong Liang . Polymer microparticles with ultralong room-temperature phosphorescence for visual and quantitative detection of oxygen through phosphorescence image and lifetime analysis. Chinese Chemical Letters, 2025, 36(5): 110629-. doi: 10.1016/j.cclet.2024.110629

    12. [12]

      Hong YaoFeixiang YangJianpeng HuWenyu CaoShuning QinTai-Bao WeiBingbing ShiQi Lin . Ultralong room temperature phosphorescence and broad color-tunability persistent luminescence via new strategy. Chinese Chemical Letters, 2025, 36(6): 110375-. doi: 10.1016/j.cclet.2024.110375

    13. [13]

      Hai-Yang SongJun JiangYu-Hang SongMin-Hang ZhouChao WuXiang ChenWei-Min He . Supporting-electrolyte-free electrochemical [2 + 2 + 1] annulation of benzo[d]isothiazole 1,1-dioxides, N-arylglycines and paraformaldehyde. Chinese Chemical Letters, 2024, 35(6): 109246-. doi: 10.1016/j.cclet.2023.109246

    14. [14]

      Qian WangTing GaoXiwen LuHangchao WangMinggui XuLongtao RenZheng ChangWen Liu . Nanophase separated, grafted alternate copolymer styrene-maleic anhydride as an efficient room temperature solid state lithium ion conductor. Chinese Chemical Letters, 2024, 35(7): 108887-. doi: 10.1016/j.cclet.2023.108887

    15. [15]

      Xin LiLing ZhangYunyan FanShaojing LinYong LinYongsheng YingMeijiao HuHaiying GaoXianri XuZhongbiao XiaXinchuan LinJunjie LuXiang Han . Carbon interconnected microsized Si film toward high energy room temperature solid-state lithium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109776-. doi: 10.1016/j.cclet.2024.109776

    16. [16]

      Sheng ZhaoJunjie LuBifu ShengSiying ZhangHao LiJizhang ChenXiang Han . High-performance room temperature solid-state lithium battery enabled by PP-PVDF multilayer composite electrolyte. Chinese Chemical Letters, 2025, 36(6): 110008-. doi: 10.1016/j.cclet.2024.110008

    17. [17]

      Qiao SongXue PengZhouyu WangLeyong Wang . Iron-catalyzed C–H activation: A sustainable approach to efficient organic synthesis. Chinese Chemical Letters, 2025, 36(5): 110869-. doi: 10.1016/j.cclet.2025.110869

    18. [18]

      Tao TangChen LiSipu LiZhong QiuTianqi YangBeirong YeShaojun ShiChunyang WuFeng CaoXinhui XiaMinghua ChenXinqi LiangXinping HeXin LiuYongqi Zhang . One-step constructing advanced N-doped carbon@metal nitride as ultra-stable electrocatalysts via urea plasma under room temperature. Chinese Chemical Letters, 2024, 35(11): 109887-. doi: 10.1016/j.cclet.2024.109887

    19. [19]

      Yu-Yao LiXiao-Hui LiZhi-Xuan AnYang ChuXiu-Li Wang . Room-temperature olefin epoxidation reaction by two 2D cobalt metal-organic complexes under O2 atmosphere: Coordination and structural regulation. Chinese Chemical Letters, 2025, 36(4): 109716-. doi: 10.1016/j.cclet.2024.109716

    20. [20]

      Lu DaiYuxin RenShuang LiMeidi WangChentao HuYa-Pan WuGuangtong HaiDong-Sheng Li . Room-temperature synthesis of Co(OH)2/Mo2TiC2Tx hetero-nanosheets with interfacial coupling for enhanced oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(4): 109774-. doi: 10.1016/j.cclet.2024.109774

Metrics
  • PDF Downloads(3)
  • Abstract views(736)
  • HTML views(34)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return