Citation: Hu Xinyu, Yang Bobin, Yao Wei, Wang Dawei. Alanine Triazole Mn-Catalyzed Coupling/Aromatization of Quinone Methides[J]. Chinese Journal of Organic Chemistry, ;2018, 38(12): 3296-3301. doi: 10.6023/cjoc201805019 shu

Alanine Triazole Mn-Catalyzed Coupling/Aromatization of Quinone Methides

  • Corresponding author: Wang Dawei, wangdw@jiangnan.edu.cn
  • These authors contributed equally to this work
  • Received Date: 8 May 2018
    Revised Date: 18 July 2018
    Available Online: 14 December 2018

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 2176111), the Fundamental Research Funds for the Central Universities (No. JUSRP 51627B)Fundamental Research Funds for the Central Universities JUSRP51627Bthe National Natural Science Foundation of China 2176111

Figures(2)

  • Alanine triazole Mn-catalyzed 1, 6-conjugate coupling/aromatization of para-quinone methides was developed with good to high yields under mild conditions. This protocol provided an efficient and practical route to the synthetically interesting functionalized methines and their analogues. Preliminary mechanistic experiments revealed 1, 6-conjugate addition of nucleophiles to para-quinone methides (p-QMs). The manganese was acted as the Lewis acid.
  • 加载中
    1. [1]

      (a) Rokita, S. E. Quinone Methides, Wiley, Hoboken, 2009.
      (b) Toteva, M. M.; Richard, J. P. Adv. Phys. Org. Chem. 2011, 45, 39.

    2. [2]

      (a) Parai, M. K.; Panda, G.; Chaturvedi, V.; Manjub, Y. K.; Sinha, S. Bioorg. Med. Chem. Lett. 2008, 18, 289.
      (b) Martin, H. J.; Magauer, T.; Mulzer, J. Angew. Chem. 2010, 122, 5746.
      (c) Sridar, C.; Agostino, J. D; Hollenberg, P. F. Drug Metab. Dispos. 2012, 40, 2280.

    3. [3]

      Nigst, T. A.; Ammer, J.; Mayr, H. Angew. Chem., Int. Ed. 2012, 51, 1353.  doi: 10.1002/anie.201107315

    4. [4]

      (a) Chu, W.; Zhang, L.; Bao, X.; Zhao, X.; Zeng, C.; Du, J.; Zhang, G.; Wang, F.; Ma, X.; Fan, C. Angew. Chem., Int. Ed. 2013, 52, 9229.
      (b) Deng, Y.; Zhang, X.; Yu, K.; Yan, X.; Du, J.; Huang, H.; Fan, C. Chem. Commun. 2016, 52, 4183.
      (c) Zhang, X.; Du, J.; Deng, Y.; Chu, W.; Yan, X.; Yu, K.; Fan, C. J. Org. Chem. 2016, 81, 2598.
      (d) Zhang, X.; Deng, Y.; Yan, X.; Yu, K.; Wang, F.; Ma, X; Fan, C. J. Org. Chem. 2016, 81, 5655.
      (e) Zhang, X.; Deng, Y.; Gan, K.; Yan, X.; Yu, K.; Wang, F.; Fan, C. Org. Lett. 2017, 19, 1752.
      (f) Zhang, X.; Gan, K.; Liu, X.; Deng, Y.; Wang, F.; Yu, K.; Zhang, J.; Fan, C. Org. Lett. 2017, 19, 3207.
      (g) Deng, Y.; Chu, W.; Zhang, X.; Yan, X.; Yu, K.; Yang, L.; Huang, H.; Fan, C. J. Org. Chem. 2017, 82, 5433.

    5. [5]

      (a) Gai, K.; Fang, X.; Li, X.; Xu, J.; Wu, X.; Lin, A.; Yao, H. Chem. Commun. 2015, 51, 15831.
      (b) Yuan, Z.; Fang, X.; Li, X.; Wu, J.; Yao, H.; Lin, A. J. Org. Chem. 2015, 80, 11123.
      (c) Gao, S.; Xu, X.; Yuan, Z.; Zhou, H.; Yao, H.; Lin, A. Eur. J. Org. Chem. 2016, 17, 3006.
      (d) Yang, C.; Gao, S.; Yao, H.; Lin, A. J. Org. Chem. 2016, 81, 11956.
      (e) Yuan, Z.; Wei, W.; Lin, A.; Yao, H. Org. Lett. 2016, 18, 3370.
      (f) Li, X.; Xu, X.; Wei, W.; Lin, A.; Yao, H. Org. Lett. 2016, 18, 428.

    6. [6]

      (a) Shen, Y.; Qi, J.; Mao, Z.; Cui, S. Org. Lett. 2016, 18, 2722.
      (b) Huang, B.; Shen, Y.; Mao, Z.; Liu, Y.; Cui, S. Org. Lett. 2016, 18, 4888.
      (c) Lin, C.; Shen, Y.; Huang, B.; Liu, Y.; Cui, S. J. Org. Chem. 2017, 82, 3950.

    7. [7]

      He, F.; Jin, J.; Yang, Z.; Yu, X.; Fossey, J. S.; Deng, W. ACS Catal. 2016, 6, 652.  doi: 10.1021/acscatal.5b02619

    8. [8]

      Caruana, L.; Kniep, F.; Johansen, T. K.; Poulsen, P. H.; Jøgensen, K. A. J. Am. Chem. Soc. 2014, 136, 15929.  doi: 10.1021/ja510475n

    9. [9]

      Ge, L.; Lu, X.; Cheng, C.; Chen, J.; Cao, W.; Wu, X.; Zhao, G. J. Org. Chem. 2016, 81, 9315.  doi: 10.1021/acs.joc.6b01906

    10. [10]

      (a) López, A.; Parra, A.; Barrera, C. J.; Tortosa, M. Chem. Commun. 2015, 51, 17684.
      (b) Barrera, C. J.; Parra, A.; López, A.; Acosta, F. C.; Sanz, D. C.; Cárdenas, D. J.; Tortosa, M. ACS Catal. 2016, 6, 442.

    11. [11]

      Zhao, K.; Zhi, Y.; Wang, A.; Enders, D. ACS Catal. 2016, 6, 657.  doi: 10.1021/acscatal.5b02519

    12. [12]

      Lou, Y.; Cao, P.; Jia, T.; Zhang, Y.; Wang, M.; Liao, J. Angew. Chem., Int. Ed. 2015, 54, 12134.  doi: 10.1002/anie.201505926

    13. [13]

      (a) Reddy, V.; Anand, R. V. Org. Lett. 2015, 17, 3390.
      (b) Ramanjaneyulu, B. T.; Mahesh, S.; Anand, R. V. Org. Lett. 2015, 17, 3952.
      (c) Arde, P.; Anand, R. V. Org. Biomol. Chem. 2016, 14, 5550.
      (d) Arde, P.; Anand, R. V. RSC. Adv. 2016, 6, 77111.
      (e) Mahesh, S.; Kant, G.; Anand, R. V. RSC Adv. 2016, 6, 80718.
      (f) Jadhav, A. S.; Anand, R. V. Org. Biomol. Chem. 2017, 15, 56.

    14. [14]

      Ma, C.; Huang, Y.; Zhao, Y. ACS Catal. 2016, 6, 6408.  doi: 10.1021/acscatal.6b01845

    15. [15]

      Dong, N.; Zhang, Z.; Xue, X.; Li, X.; Cheng, J. Angew. Chem., Int. Ed. 2016, 55, 1460.  doi: 10.1002/anie.201509110

    16. [16]

      (a) Neilson, A. R.; Morrison, C. F. Org. Process Res. Dev. 2012, 16, 65.
      (b) Molleti, N.; Kang, J. Org. Lett. 2017, 19, 958.
      (c) Zhuge, R.; Wu, L.; Quan, M.; Butt, N.; Yang, G.; Zhang, W. Adv. Synth. Catal. 2017, 359, 1028.

    17. [17]

      (a) Li, S.; Liu, Y.; Huang, B.; Zhou, T.; Tao, H.; Xiao, Y.; Liu, L.; Zhang, J. ACS Catal. 2017, 7, 2805.
      (b) Zhu, Y.; Zhang, W.; Zhang, L.; Luo, S. Chem.-Eur. J. 2017, 23, 1253.
      (c) Kang, T.; Wu, L.; Yu, Q.; Wu, X. Chem.-Eur. J. 2017, 23, 6509.
      (d) Jadhav, A. S.; Anand, R. V. Org. Biomol. Chem. 2017, 15, 56.
      (e) Lian, X.; Adili, A.; Liu, B.; Tao, Z.; Han, Z. Org. Biomol. Chem. 2017, 15, 3670.
      (f) Goswami, P.; Singh, G.; Anand, R. V. Org. Lett. 2017, 19, 1982.
      (g) Wang, Z.; Sun, J. Org. Lett. 2017, 19, 2334.
      (h) Roiser, L.; Waser, M. Org. Lett. 2017, 19, 2338.

    18. [18]

      (a) Duan, H.; Sengupta, S.; Petersen, J. L.; Akhmedov, N. G.; Shi, X. J. Am. Chem. Soc. 2009, 131, 12100.
      (b) Wang, D.; Cai, R.; Sharma, Jirak, J.; Thummanapelli, S. K.; Akhmedov, N. G.; Zhang, H.; Liu, X.; Petersen, J.; Shi, X. J. Am. Chem. Soc. 2012, 134, 9012.

    19. [19]

      (a) Wang, D.; Zhao, K.; Xu, C.; Miao, H.; Ding, Y. ACS Catal. 2014, 4, 3910.
      (b) Wang, D.; Ge, B.; Li, L.; Shan, J.; Ding, Y. J. Org. Chem. 2014, 79, 8607.
      (c) Wang, D.; Yu, X.; Yao, W.; Hu, W.; Ge, C.; Shi, X. Chem.-Eur. J. 2016, 22, 5543.
      (d) Yang, Y.; Qin, A.; Zhao, K.; Wang, D.; Shi, X. Adv. Synth. Catal. 2016, 358, 1433.
      (e) Yang, Y.; Hu, W.; Ye, X.; Wang, D.; Shi, X. Adv. Synth. Catal. 2016, 358, 2583.
      (f) Yang, B.; Yao, W.; Xia, X.-F.; Wang, D. Org. Biomol. Chem. 2018, 16, 4547.

    20. [20]

    21. [21]

      Gu, B.; Yu, X.; Xu, Z.; Pan, F.; Wang, D. J. Chem. Res. 2017, 41, 564.  doi: 10.3184/174751917X15045169836235

  • 加载中
    1. [1]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    2. [2]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    3. [3]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    4. [4]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    5. [5]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    6. [6]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    7. [7]

      Ruoxi RUNJikai ZHULixia HANZhiyin XIAOXiujuan JIANGJing JIN . Red light-induced CO-release from manganese carbonyl complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2575-2583. doi: 10.11862/CJIC.20250132

    8. [8]

      Xiaohang JINQi LIUJianping LANG . Room‑temperature solid‑state synthesis, structure, and third‑order nonlinear optical properties of phosphine‑ligand‑protected silver thiolate clusters. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1505-1512. doi: 10.11862/CJIC.20250125

    9. [9]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    10. [10]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    11. [11]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    12. [12]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    13. [13]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    14. [14]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    15. [15]

      Yihui Song Shangshang Qin Kai Wu Chengyun Jin Bin Yu . 生物化学在高水平创新型药学人才培养中的交叉融合应用——以去甲基化酶LSD1抑制剂的活性评价为例. University Chemistry, 2025, 40(6): 341-352. doi: 10.12461/PKU.DXHX202406018

    16. [16]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    17. [17]

      Aoyun MengZhenhua LiGuoyuan XiongZhen LiJinfeng Zhang . S-scheme heterojunction Al6Si2O13/BiOBr with enhanced charge transfer effect for efficient and stable photocatalytic degradation of triazophos and dichlorvos pesticides. Acta Physico-Chimica Sinica, 2026, 42(5): 100186-0. doi: 10.1016/j.actphy.2025.100186

    18. [18]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    19. [19]

      Doudou QinJunyang DingChu LiangQian LiuLigang FengYang LuoGuangzhi HuJun LuoXijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-0. doi: 10.3866/PKU.WHXB202310034

    20. [20]

      Keke GaoHaozhe XuXingkun LiuChunwen Sun . Cr-doped lithium-rich manganese-based materials as a cathode for high-performance all-solid-state lithium batteries. Acta Physico-Chimica Sinica, 2026, 42(3): 100200-0. doi: 10.1016/j.actphy.2025.100200

Metrics
  • PDF Downloads(5)
  • Abstract views(1300)
  • HTML views(139)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return