Reactivity of Ruthenium Allenylidene Complexes with Hydrazines:Formation of Acrylonitrile Complexes
- Corresponding author: Wen Tingbin, chwtb@xmu.edu.cn
Citation:
Cai Tao, Yang Yu, Zhang Li, Wen Tingbin. Reactivity of Ruthenium Allenylidene Complexes with Hydrazines:Formation of Acrylonitrile Complexes[J]. Chinese Journal of Organic Chemistry,
;2018, 38(8): 2017-2027.
doi:
10.6023/cjoc201804023
(a) Bruce, M. I. Chem. Rev. 1998, 98, 2797.
(b) Herndon, J. W. Coord. Chem. Rev. 2018, 356, 1 and references therein.
(c) Cadierno, V. ; Gimeno, J. Chem. Rev. 2009, 109, 3512.
(d) Che, C. M. ; Ho, C. M. ; Huang, J. S. Coord. Chem. Rev. 2007, 251, 2145.
(e) Varela, J. A. ; González-Rodríguez, C. ; Saá, C. Top. Organ-omet. Chem. 2014, 48, 237.
(f) Lozano-Vila, A. M. ; Monsaert, S. ; Bajek, A. ; Verpoort, F. Chem. Rev. 2010, 110, 4865.
(g) Nishibayashi, Y. Synthesis 2012, 44, 489.
(h) Rigaut, S. ; Touchard, D. ; Dixneuf, P. H. ; Coord. Chem. Rev. 2004, 248, 1585.
(i) Bruneau, C. ; Dixneuf, P. H. Angew. Chem., Int. Ed. 2006, 45, 2176.
Selected examples: (a) Hyder, I. ; Jimenez-Tenorio, M. ; Puerta, M. C. ; Valerga, P. Organometallics 2011, 30, 726.
(b) Smith, E. J. ; Johnson, D. G. ; Thatcher, R. J. ; Whitwood, A. C. ; Lynam, J. M. Organometallics 2013, 32, 7407.
(c) Bruce, M. I. ; Burgun, A. ; Fox, M. A. ; Jevric, M. ; Low, P. J. ; Nicholson, B. K. ; Parker, C. R. ; Skelton, B. W. ; White, A. H. ; Zaitseva, N. N. Organometallics 2013, 32, 3286.
(d) Alós, J. ; Bolaño, T. ; Esteruelas, M. A. ; Oliván, M. ; Oñate, E. ; Valencia, M. Inorg. Chem. 2014, 53, 1195.
(e) Garcia de la Arada, I. ; Díez, J. ; Gamasa, M. P. ; Lastra, E. Organometallics 2015, 34, 1345.
(f) Schauer, P. A. ; Skelton, B. W. ; Koutsantonis, G. A. Organometallics 2015, 34, 4975.
(g) Spoerler, S. ; Strinitz, F. ; Rodehutskors, P. ; Mueller, L. ; Waterloo, A. R. ; Duerr, M. ; Huebner, E. ; Ivanovic-Burmazovic, I. ; Tykwinski, R. R. ; Burzlaff, N. New J. Chem. 2016, 40, 2167.
(h) Jimenez-Tenorio, M. ; Puerta, M. C. ; Valerga, P. Organometallics 2016, 35, 388.
(i) Huang, J. B. ; Zhou, X. X. ; Zhao, Q. Y. ; Li, S. H. ; Xia, H. P. Chin. J. Chem. 2017, 35, 420.
Coletti, C.; Marrone, A.; Re, N. Acc. Chem. Res. 2012, 45, 139.
doi: 10.1021/ar200009u
(a) Cadierno, V. ; Gamasa, M. P. ; Gimeno, J. ; González-Cueva, M. ; Lastra, E. ; Borge, J. ; García-Granda, S. ; Pérez-Carreńo, E. Organometallics 1996, 15, 2137.
(b) Auger, N. ; Touchard, D. ; Rigaut, S. ; Halet, J. -F. ; Saillard, J. -Y. Organometallics 2003, 22, 1638.
(c) Wong, C. -Y. ; Lai, L. -M. ; Lam, C. -Y. ; Zhu, N. Organometallics 2008, 27, 5806.
Selected examples: (a) Pino-Chamorro, J. A. ; Bustelo, E. ; Puerta, M. C. ; Valerga, P. Organometallics 2009, 28, 1546.
(b) Bustelo, E. ; Jimenez-Tenorio, M. ; Puerta, M. C. ; Valerga, P. Organometallics 2007, 26, 4300.
(c) Rigaut, S. ; Touchard, D. ; Dixneuf, P. H. Organometallics 2003, 22, 3980.
(d) Bustelo, E. ; Jiménez-Tenorio, M. ; Mereiter, K. ; Puerta, M. C. ; Valerga, P. Organometallics 2002, 21, 1903.
Selected examples: (a) Esteruelas, M. A. ; Gómez, A. V. ; López, A. M. ; Oñate, E. ; Ruiz, N. Organometallics 1999, 18, 1606.
(b) Bernad, D. J. ; Esteruelas, M. ; López, A. M. ; Oliván, M. ; Oñate, E. ; Puerta, M. C. ; Valerga, P. Organometallics 2000, 19, 4327.
(c) Kanao, K. ; Tanabe, Y. ; Miyake, Y. ; Nishibayashi, Y. Organometallics 2010, 29, 2381.
(d) Queensen, M. J. ; Rath, N. P. ; Bauer, E. B. Organometallics 2014, 33, 5052.
(e) Strinitz, F. ; Tucher, J. ; Januszewski, J. A. ; Waterloo, A. R. ; Stegner, P. ; Förtsch, S. ; Hübner, E. ; Tykwinski, R. R. ; Burzlaff, N. Organometallics 2014, 33, 5129.
(f) Garcia de la Arada, I. ; Díez, J. ; Gamasa, M. P. ; Lastra, E. J. Organomet. Chem. 2015, 797, 101.
(a) Chen, K. -H. ; Feng, Y. J. ; Ma, H. -W. ; Lin, Y. -C. ; Liu, Y. -H. ; Kuo, T. -S. Organometallics 2010, 29, 6829.
(b) Cadierno, V. ; Conejero, S. ; Gamasa, M. P. ; Gimeno, J. ; Falvello, L. R. ; Llusar, R. M. Organometallics 2002, 21, 3716.
(c) Cadierno, V. ; Gamasa, M. P. ; Gimeno, J. Organometallics 1998, 17, 5216.
(a) Serrano-Ruiz, M. ; Lidrissi, C. ; Mañas, S. ; Peruzzini, M. ; Romerosa, A. J. Organomet. Chem. 2014, 751, 654.
(b) Talavera, M. ; Bolańo, S. ; Bravo, J. ; Castro, J. ; García-Fontán, S. ; Hermida-Ramón, J. M. Organometallics 2013, 32, 4402.
(a) Venâncio, A. I. F. M. ; Guedes da Silva, F. C. ; Martins, L. M. D. R. S. ; Fraústo da Silva, J. J. R. ; Pombeiro, A. J. L. Organometallics 2005, 24, 4654.
(b) Cadierno, V. ; Gamasa, M. P. ; Gimeno, J. ; López-González, M. C. ; Borge, J. ; Garcıá-Granda, S. Organometallics 1997, 16, 4453.
(a) Fischer, H. ; Reindl, D. ; Troll, C. ; Leroux, F. J. Organomet. Chem. 1995, 490, 221.
(b) Esteruelas, M. A. ; Gómez, A. V. ; López, A. M. ; Modriego, J. ; Oñate, E. Organometallics 1998, 17, 5434.
(c) Bolańo, S. ; Rodríguez-Rocha, M. M. ; Bravo, J. ; Castro, J. ; Oñate, E. ; Peruzzini, M. Organometallics 2009, 28, 6020.
(d) Jiménez-Tenorio, J. ; Palacios, M. D. ; Puerta, M. C. ; Valerga, P. J. Organomet. Chem. 2004, 689, 2776.
(e) Peruzzini, M. ; Barbaro, P. ; Bertolasi, V. ; Bianchini, C. ; Mantovani, N. ; Marvelli, L. ; Rossi, R. Dalton Trans. 2003, 4121.
(f) Coletti, C. ; Gonsalvi, L. ; Guerriero, A. ; Marvelli, L. ; Peruzzini, M. ; Reginato, G. ; Re, N. Organometallics 2010, 29, 5982.
Utegenov, K. I.; Krivykh, V. V. Glukhov, I. V. Petrovskii, P. V.; Ustynyuk, N. A. J. Organomet. Chem. 2011, 696, 3408.
doi: 10.1016/j.jorganchem.2011.07.034
(a) Beletskaya, I. P. ; Cheprakov, A. V. Organometallics 2012, 31, 7753.
(b) Hoover, J. M. ; DiPasquale, A. ; Mayer, J. M. ; Michael, F. E. J. Am. Chem. Soc. 2010, 132, 5043.
(c) Schweizer, P. D. ; Wadepohl, H. ; Gade, L. H. Organometallics 2013, 32, 3697.
(a) Barrett, A. G. M. ; Carpenter, N. E. ; Sabat, M. J. Organomet. Chem. 1988, 352, C8.
(b) Alt, H. G. ; Engelhardt, H. E. ; Steinlein, E. ; Rogers, D. J. Organomet. Chem. 1987, 344, 321.
(c) Albertin, G. ; Antoniutti, S. ; Bortoluzzi, M. ; Botter, A. ; Castro, J. Dalton Trans. 2015, 44, 3439.
Dabb, S. L.; Messerle, B. A.; Wagler, J. Organometallics 2008, 27, 4657.
doi: 10.1021/om800494c
(a) Fukumoto, Y. ; Dohi, T. ; Masaoka, H. ; Chatani, N. ; Murai, S. Organometallics 2002, 21, 3845.
(b) Fukumoto, Y. ; Tamura, Y. ; Iyori, Y. ; Chatani, N. J. Org. Chem. 2016, 81, 3161.
(c) Fukumoto, Y. ; Ohmae, A. ; Hirano, M. ; Chatani, N. Asian J. Org. Chem. 2013, 2, 1036.
(d) Fukumoto, Y. ; Asai, H. ; Shimizu, M. ; Chatani, N. J. Am. Chem. Soc. 2007, 129, 13792.
Szesni, N.; Hohberger, C.; Mohamed, G. G.; Burzlaff, N.; Weibert, B.; Fischer, H. J. Organomet. Chem. 2006, 691, 5753.
doi: 10.1016/j.jorganchem.2006.07.049
Cai, T.; Yang, Y.; Li, W.-W.; Qin, W.-B.; Wen, T.-B. Chem.-Eur. J. 2018, 24, 1606.
doi: 10.1002/chem.201703971
Selegue, J. P. Organometallics 1982, 1, 217.
doi: 10.1021/om00061a038
(a) Aumann, R. ; Jasper, B. ; Fröhlich, R. Organometallics 1996, 14, 2447.
(b) Das, U. K. ; Bhattacharjee, M. Chem. -Eur. J. 2012, 18, 5180.
(c) Sgro, M. J. ; Stephan, D. W. Dalton Trans. 2013, 42, 10460.
(a) Anil Kumar, P. G. ; Pregosin, P. S. ; Vallet, M. ; Bernardinelli, G. ; Jazzar, R. F. ; Viton, F. ; Kündig, E. P. Organometallics 2004, 23, 5410.
(b) Chiririwa, H. ; Meijboom, R. Acta Crystallogr. 2011, E67, m1335.
(a) Kopf, H. ; Holzberger, B. ; Pietraszuk, C. ; Hübner, E. ; Burzlaff, N. Organometallics 2008, 27, 5894.
(b) Jiménez-Tenorio, M. ; Palacios, M. D. ; Puerta, M. C. ; Valerga, P. J. Organomet. Chem. 2004, 689, 2776.
(c) Bernad, D. J. ; Esteruelas, M. ; López, A. M. ; Modrego, J. ; Puerta, M. C. ; Valerga, P. Organometallics 1999, 18, 4995.
In the catalytic reactions, benzophenone or 9H-fluoren-9-one was also isolated as the byproducts (ca. 25%). We initially envisioned that the H2O presented in the reaction solution, which released along with the Selegue's reaction during the formation of the allenylidene complex, might lead to the hydrolysis of the acrylonitrile product 5 to give the respective ketones. We have performed the control experiments by heating a solution of 3, 3-diphenylacrylo-nitrile (5a) in DCE with purposely added water at even 110℃ for several hours with or without 2.5 mol% of complex 1. However, the hydrolysis issue is unlikely. As reflected by the TLC of the reaction solution, only trace amount of benzophenone can be detected. On the other hand, it has been reported that γ-substituted tert-propargyl alcohols have been involved in Sonogashira-type reactions as masked terminal alkynes via β-carbon elimination with liberation of ketone (see Ref. [23]). We tentatively envisioned that the ketone byproducts obtained in the catalytic reaction might come from β-carbon elimination of terminal tert-propargyl alcohols.
(a) Nishimura, T. ; Ariki, H. ; Maeda, Y. ; Uemura, S. Org. Lett. 2003, 5, 2997.
(b) Funayama, A. ; Satoh, T. ; Miura, M. J. Am. Chem. Soc. 2005, 127, 15354.
(c) Li, T. ; Wang, Z. ; Zhang, M. L. ; Zhang H. -J. ; Wen, T. -B. Chem. Commun. 2015, 51, 6777.
(d) Li, T. ; Wang, Z. ; Qin, W. -B. ; Wen, T. -B. ChemCatChem 2016, 8, 2146.
Hao, L.; Wu, F.; Ding, Z.-C.; Xu, S.-X.; Ma, Y.-L.; Chen, L.; Zhan, Z.-P. Chem.-Eur. J. 2012, 18, 6453.
doi: 10.1002/chem.201200763
Chiarucci, M.; Mocci, R.; Syntrivanis, L. D.; Cera, G.; Mazzanti, A.; Bandini, M. Angew. Chem., Int. Ed. 2013, 52, 10850.
doi: 10.1002/anie.201304619
Hu, M. Y.; Ni, C. F.; Li, L. C.; Han, Y. X.; Hu, J. B. J. Am. Chem. Soc. 2015, 137, 14496.
doi: 10.1021/jacs.5b09888
Shipilovskikh, S. A.; Vaganov, V. Y.; Denisova, E. I.; Rubtsov, A. E.; Malkov, A. V. Org. Lett. 2018, 20, 728.
doi: 10.1021/acs.orglett.7b03862
Gang Lang , Jing Feng , Bo Feng , Junlan Hu , Zhiling Ran , Zhiting Zhou , Zhenju Jiang , Yunxiang He , Junling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113
Jian-Rong Li , Jieying Hu , Lai-Hon Chung , Jilong Zhou , Parijat Borah , Zhiqing Lin , Yuan-Hui Zhong , Hua-Qun Zhou , Xianghua Yang , Zhengtao Xu , Jun He . Insight into stable, concentrated radicals from sulfur-functionalized alkyne-rich crystalline frameworks and application in solar-to-vapor conversion. Chinese Journal of Structural Chemistry, 2024, 43(8): 100380-100380. doi: 10.1016/j.cjsc.2024.100380
Chunhui Zhang , Jie Wang , Jieyang Zhan , Runmin Yang , Guanggang Gao , Jiayuan Zhang , Linlin Fan , Mengqi Wang , Hong Liu . Highly sensitive hydrazine detection through a novel Raman scattering quenching mechanism enabled by a crystalline and noble metal–free polyoxometalate substrate. Chinese Chemical Letters, 2025, 36(3): 109719-. doi: 10.1016/j.cclet.2024.109719
Qiyan Wu , Ruixin Zhou , Zhangyi Yao , Tanyuan Wang , Qing Li . Effective approaches for enhancing the stability of ruthenium-based electrocatalysts towards acidic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(10): 109416-. doi: 10.1016/j.cclet.2023.109416
Hao WANG , Kun TANG , Jiangyang SHAO , Kezhi WANG , Yuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176
Chun-Yun Ding , Ru-Yuan Zhang , Yu-Wu Zhong , Jiannian Yao . Binary and heterostructured microplates of iridium and ruthenium complexes: Preparation, characterization, and thermo-responsive emission. Chinese Journal of Structural Chemistry, 2024, 43(10): 100393-100393. doi: 10.1016/j.cjsc.2024.100393
Counter anion and hydrogen atoms are omitted for clarity. Selected bond lengths (nm) and angles (°): Ru(1)—C(1) 0.1892(6), C(1)—C(2) 0.1244(8), C(2)—C(3) 0.1359(8), Ru(1)—N(1) 0.2151(4), Ru(1)—N(2) 0.2198(4), Ru(1)—P(1) 0.22655(14), Ru(1)—P(2) 0.22967(14), Ru(1)—Cl(1) 0.24291(13); C(1)—Ru(1)—N(1) 177.7(2), C(1)—Ru(1)—N(2) 87.3(2), N(1)—Ru(1)—N(2) 94.70(17), C(1)—Ru(1)—P(1) 94.68(17), N(1)—Ru(1)—P(1) 83.27(13), N(2)—Ru(1)—P(1) 177.96(12), C(1)—Ru(1)—P(2) 89.37(17), N(1)—Ru(1)—P(2) 92.00(13), N(2)—Ru(1)—P(2) 80.76(13), P(1)—Ru(1)—P(2) 99.46(5), C(1)—Ru(1)—Cl(1) 97.11(17), N(1)—Ru(1)—Cl(1) 81.84(13), N(2)—Ru(1)—Cl(1) 90.60(13), P(1)—Ru(1)—Cl(1) 88.94(5), P(2)—Ru(1)—Cl(1) 168.98(5), C(2)—C(1)—Ru(1) 174.9(5), C(3)—C(2)—C(1) 172.8(6)
Counter anion and hydrogen atoms are omitted for clarity. Selected bond lengths (nm) and angles (°): Ru(1)—C(1) 0.1883(5), C(1)—C(2) 0.1226(7), C(2)—C(3) 0.1361(8), Ru(1)—N(1) 0.2162(4), Ru(1)—N(2) 0.2214(4), Ru(1)—P(1) 0.22705(12), Ru(1)—P(2) 0.22960(12), Ru(1)—Cl(1) 0.24551(11); C(1)—Ru(1)—N(1) 177.10(17), C(1)—Ru(1)—N(2) 84.57(17), N(1)—Ru(1)—N(2) 97.81(14), C(1)—Ru(1)—P(1) 94.82(14), N(1)—Ru(1)—P(1) 82.76(11), N(2)—Ru(1)—P(1) 178.58(10), C(1)—Ru(1)—P(2) 91.02(15), N(1)—Ru(1)—P(2) 91.02(11), N(2)—Ru(1)—P(2) 80.40(11), P(1)—Ru(1)—P(2) 100.90(4), C(1)—Ru(1)—Cl(1) 98.53(14), N(1)—Ru(1)—Cl(1) 79.83(11), N(2)—Ru(1)—Cl(1) 90.49(10), P(1)—Ru(1)—Cl(1) 88.33(4), P(2)—Ru(1)—Cl(1) 166.15(4), C(2)—C(1)—Ru(1) 174.9(4), C(3)—C(2)—C(1) 169.1(6)
Counter anion and hydrogen atoms except H(2A) are omitted for clarity. Selected bond lengths (nm) and angles (°): Ru(1)—N(1) 0.2081(2), N(1)—C(1) 0.1127(4), C(1)—C(2) 0.1436(4), C(2)—C(3) 0.1350(4), Ru(1)—N(2) 0.2075(2), Ru(1)—N(3) 0.2172(2), Ru(1)—P(1) 0.22511(6), Ru(1)—P(2) 0.22989(6), Ru(1)—Cl(1) 0.24168(6); N(2)—Ru(1)—N(1) 85.72(8), N(2)—Ru(1)—N(3) 96.07(8), N(1)—Ru(1)—N(3) 88.34(8), N(2)—Ru(1)—P(1) 82.27(6), N(1)—Ru(1)—P(1) 93.52(6), N(3)— Ru(1)—P(1) 177.40(6), N(2)—Ru(1)—P(2) 88.37(6), N(1)—Ru(1)—P(2) 167.48(6), N(3)—Ru(1)—P(2) 81.31(6), P(1)—Ru(1)—P(2) 96.62(2), N(2)—Ru(1)—Cl(1) 173.07(6), N(1)—Ru(1)—Cl(1) 87.67(6), N(3)—Ru(1)—Cl(1) 85.82(6), P(1)—Ru(1)—Cl(1) 96.07(2), P(2)—Ru(1)—Cl(1) 98.51(2), C(1)—N(1)—Ru(1) 175.4(2), N(1)—C(1)—C(2) 178.6(3), C(3)—C(2)—C(1) 121.8(3)
Counter anion and hydrogen atoms except H(2) are omitted for clarity. Selected bond lengths (nm) and angles (°): Ru(1)—N(1) 1.992(10), N(1)—C(1) 0.1150(14), C(1)—C(2) 0.1423(16), C(2)—C(3) 0.1337(17), Ru(1)—N(2) 0.2107(9), Ru(1)—N(3) 0.2218(8), Ru(1)—P(1) 0.2261(3), Ru(1)—P(2) 0.2278(3), Ru(1)—Cl(1) 0.2447(3); N(2)—Ru(1)—N(1) 174.5(3), N(2)—Ru(1)—N(3) 92.6(3), N(1)—Ru(1)—N(3) 91.7(3), N(2)—Ru(1)—P(1) 82.8(2), N(1)—Ru(1)—P(1) 93.0(3), N(3)—Ru(1)—P(1) 175.3(2), N(2)—Ru(1)—P(2) 94.3(2), N(1)—Ru(1)—P(2) 89.8(3), N(3)—Ru(1)—P(2) 80.8(2), P(1)—Ru(1)—P(2) 99.57(10), N(2)— Ru(1)—Cl(1) 86.9(2), N(1)—Ru(1)—Cl(1) 89.7(3), N(3)—Ru(1)—Cl(1) 88.9(2), P(1)—Ru(1)—Cl(1) 90.72(10), P(2)—Ru(1)—Cl(1) 169.71 (9), C(1)—N(1)—Ru(1) 173.4(9), N(1)—C(1)—C(2) 178.3(13), C(3)— C(2)—C(1) 122.9(11).