Citation: Wang Yufei, Zheng Liping, Li Jingjing, Liu Chao, Yao Jianhua. Progress in the Structures, Characteristics and Applications of Fluorofullerenes[J]. Chinese Journal of Organic Chemistry, ;2018, 38(12): 3143-3154. doi: 10.6023/cjoc201804006 shu

Progress in the Structures, Characteristics and Applications of Fluorofullerenes

  • Corresponding author: Yao Jianhua, yaojh@sioc.ac.cn
  • Received Date: 4 April 2018
    Revised Date: 11 June 2018
    Available Online: 14 December 2018

    Fund Project: the Henan Science and Technology Open Cooperation Project of Henan Prince 172106000067Project supported by the Henan Science and Technology Open Cooperation Project of Henan Prince (No. 172106000067)

Figures(12)

  • Fluofullerenes have attracted extensive attention due to their unique structures. The structures and the electronic properties of various fluofullerenes are mainly introduced, and then their applications are summarized in the field of precursors of functional fullerene derivatives, surface doping of diamond, dilicon, and graphene, and bulk p-doping of organic semiconductors in electronic devices. Furthermore, this review introduces the progress of new research on their application in other field, and gives the outlook for research trend and prospect of fluofullerenes materials.
  • 加载中
    1. [1]

      Liu, F.; Yang, S. Encycl. Inorg. Bioinorg. Chem. 2014, DOI:10.1002/9781119951438.eibc0033.pub2.  doi: 10.1002/9781119951438.eibc0033.pub2

    2. [2]

      Filippone, S.; Maroto, E. E.; Martín, N. Metal Catalysis in Fullerene Chemistry, John Wiley & Sons, Inc., 2013, p. 459.

    3. [3]

      Boltalina, O. V. 1-Electronic Properties and Applications of Fluorofullerenes, Elsevier, Boston, 2017, p. 1.

    4. [4]

      Chen, W.; Zeng H. P. Chin. J. Org. Chem. 2005, 25, 264(in Chinese).  doi: 10.3321/j.issn:0253-2786.2005.03.003
       

    5. [5]

      Taylor, R. J. Fluorine Chem. 2004, 125, 359.  doi: 10.1016/j.jfluchem.2003.10.012

    6. [6]

      Goryunkov, A. A.; Kareev, I. E.; Ioffe, I. N.; Popov, A. A.; Kuvychko, I. V.; Markov, V. Y.; Goldt, I. V.; Pimenova, A. S.; Serov, M. G.; Avdoshenko, S. M.; Khavrel, P. A.; Sidorov, L. N.; Lebedkin, S. F.; Mazej, Z.; Žemva, B.; Strauss, S. H.; Boltalina, O. V. J. Fluorine Chem. 2006, 127, 1423.  doi: 10.1016/j.jfluchem.2006.06.016

    7. [7]

      Kornev, A. B.; Troshin, P. A.; Peregudov, A. S.; Klinkina, Z. E.; Polyakova, N. V.; Lyubovskaya, R. N. Mendeleev Commun. 2006, 16, 157.  doi: 10.1070/MC2006v016n03ABEH002339

    8. [8]

      Shustova, N. B.; Mazej, Z.; Chen, Y. S.; Popov, A. A.; Strauss, S. H.; Boltalina, O. V. Angew. Chem. Int. Ed. 2010, 122, 824.  doi: 10.1002/ange.200905832

    9. [9]

      Denisenko. N. I.; Troyanov, S. I.; Popov. A. A.; Kuvychko, I. V.; Žemva, B.; Kemnitz, E.; Strauss, S. H.; Boltalina, O. V. J. Am. Chem. Soc. 2004, 126, 1618.  doi: 10.1021/ja039361f

    10. [10]

      Boltalina, O. V.; Borschevskii, A. Y.; Sidorov, L. N.; Street, J. M.; Taylor, R. Chem. Commun. 1996, 4, 529.
       

    11. [11]

      Kepman, A. V.; Sukhoverkhov, V. F.; Tressaud, A.; Labrugere, C.; Durand, E.; Chilingarov, N. S.; Sidorov, L. N., J. Fluorine Chem. 2006, 127, 832.  doi: 10.1016/j.jfluchem.2006.02.019

    12. [12]

      Neretin, I. S.; Lyssenko, K. A.; Antipin, M. Y.; Slovokhotov, Y. L.; Boltalina, O. V.; Troshin, P. A.; Lukonin; A. Y.; Sidorov, L. N.; Taylor, R. Angew. Chem., Int. Ed. 2000, 39, 3273.  doi: 10.1002/(ISSN)1521-3773

    13. [13]

      Boltalina, O. V.; Darwish, A. D.; Street, J. M.; Taylor. R.; Wei, X. W. J. Chem. Soc., Perkin Trans. 2 2002, 251.

    14. [14]

      Boltalina, O. V.; Markov, V. Y.; Taylor, R.; Waugh, M. P. Chem. Commun. 1996, 22, 2549.
       

    15. [15]

      Neretin, I. S.; Lyssenko, K. A.; Antipin, M. Y.; Slovokhotov, Y. L.; Boltalina, O. V.; Troshin, P. A.; Lukonin, A, Y.; Sidorov, L. N.; Taylor, R. Angew. Chem., Int. Ed. 2000, 112, 3411.  doi: 10.1002/(ISSN)1521-3757

    16. [16]

      Lebedev, A. M.; Menshikov, K. A.; Svechnikov, N. Y.; Stankevich, V. G.; Boltalina, O. V.; Goldt, I. V.; Kimura, S.; Hasumoto, M.; Nishi, T.; Akimoto, I.; Kan'no, K. Nucl. Instrum. Methods Phys. Res., Sect. A 2007, 575, 96.  doi: 10.1016/j.nima.2007.01.034

    17. [17]

      Boltalina, O. V.; Markov, V. Y.; Troshin, P. A.; Darwish, A. D.; Street, J. M.; Taylor, R. Angew. Chem., Int. Ed. 2001, 40, 787.  doi: 10.1002/1521-3773(20010216)40:4<>1.0.CO;2-X

    18. [18]

      Popov, A. A; Goryunkov, A. A.; Goldt, I. V.; Kareev, I. E.; Kuvychko, I. V.; Hunnius, W. D.; Seppelt, K.; Strauss, S. H.; Boltalina, O. V. J. Phys. Chem. A 2004, 108, 11449.

    19. [19]

      Troyanov. S. I.; Troshin, P. A.; Boltalina, O. V.; Kemnitz, E. Fullerenes, Nanotubes, Carbon Nanostruct. 2003, 11, 61.  doi: 10.1081/FST-120018665

    20. [20]

      Avent, A. G.; Taylor, R. Chem. Commun. 2002, 22, 2726.
       

    21. [21]

      Popov, A. A.; Senyavin, V. M.; Boltalina, O. V.; Seppelt, K.; Spandl, J.; Feigerle, C. S.; Compton, R. N. J. Phys. Chem. A 2006, 110, 8645.  doi: 10.1021/jp060697w

    22. [22]

      Ghafouri, R.; Anafcheh, M. J. Fluorine Chem. 2013, 145, 88.  doi: 10.1016/j.jfluchem.2012.10.006

    23. [23]

      Gakh, A. A.; Tuinman, A. A.; Adcock, J. L.; Sachleben, R. A.; Compton; R. N. J. Am. Chem. Soc. 1994, 116, 819.  doi: 10.1021/ja00081a073

    24. [24]

      Troyanov, S. I.; Troshin, P. A.; Boltalina, O. V.; Ioffe, I. N.; Sidorov, L. N.; Kemnitz, E. Angew. Chem., Int. Ed. 2001, 40, 2285.  doi: 10.1002/1521-3773(20010618)40:12<2285::AID-ANIE2285>3.0.CO;2-Y

    25. [25]

      Troyanov, S. I.; Kemnitz, E. Curr. Org. Chem. 2012, 16, 1060.  doi: 10.2174/138527212800564367

    26. [26]

      Taylor, R.; Abdul-Sada, A. K.; Boltalina, O. V.; Street, J. M.; J. Chem. Soc., Perkin Trans. 2 2000, 5, 1013.

    27. [27]

      Boltalina, O. V.; Goryunkov, A. A.; Markov, V. Y.; Ioffe, I. N.; Sidorov, L. N. Int. J. Mass Spectrom. 2003, 228, 807.  doi: 10.1016/S1387-3806(03)00240-9

    28. [28]

      Hitchcock, P. B.; Avent, A. G.; Martsinovich, N.; Troshin, P. A.; Taylor, R. Chem. Commun. 2005, 1, 75.
       

    29. [29]

      Hitchcock, P. B.; Avent, A. G.; Martsinovich, N.; Troshin, P. A.; Taylor, R. Org. Lett. 2005, 7, 1975.  doi: 10.1021/ol050441t

    30. [30]

      Goryunkov, A. A.; Markov. V. Y.; Ioffe, I. N.; Bolskar, R. D.; Diener, M. D.; Kuvychko, I. V.; Strauss, S. H.; Boltalina, O. V. Angew. Chem., Int. Ed. 2004, 116, 1015.  doi: 10.1002/(ISSN)1521-3757

    31. [31]

      Wu, H. P.; Lu, G. L.; Yuan, Y. B.; Deng, K. M.; Liu, Y. Z.; Yang, J. L. Chin. Phys. Lett. 2006, 23, 2563.  doi: 10.1088/0256-307X/23/9/059

    32. [32]

      Darwish, A. D.; Martsinovich, N.; Street, J. M.; Taylor, R. Chem.-Eur. J. 2005, 11, 5377.  doi: 10.1002/(ISSN)1521-3765

    33. [33]

      Tang, S. W.; Feng, J. D.; Qiu, Y. Q.; Sun, H.; Wang, F. D.; Su, Z. M.; Chang, Y. F.; Wang, R. S. J. Comput. Chem. 2011, 32, 658.  doi: 10.1002/jcc.v32.4

    34. [34]

      Troshin, P. A.; Avent, A. G.; Darwish, A. D.; Martsinovich, N.; Abdul-sada, A. K.; Street, J. M.; Taylor, R. Science 2005, 309, 278.  doi: 10.1126/science.1111904

    35. [35]

      Chen, D. L.; Tian, W. Q.; Feng, J. K.; Sun, C. C. J. Phys. Chem. B 2007, 111, 5167.  doi: 10.1021/jp070377s

    36. [36]

      Tang, C.; Zhu, W.; Deng, K. Chin. J. Chem. 2010, 28, 1355.  doi: 10.1002/cjoc.v28:8

    37. [37]

      Tang, S. W.; Feng, J.-D.; Sun, L. L.; Wang, F. D.; Sun, H.; Chang, Y. F.; Wang, R. S. J. Mol. Graphics Modell. 2010, 28, 891.  doi: 10.1016/j.jmgm.2010.03.009

    38. [38]

      Lenes, M.; Wetzelaer, G. A. H.; Kooistra, F. B.; Veenstra, S. C.; Hummelen, J. C.; Blom, P. W. M. Adv. Mater. 2008, 20, 2116.  doi: 10.1002/(ISSN)1521-4095

    39. [39]

      Popov, A. A.; Kareev, I. E.; Shustova, N. B.; Stukalin, E. B.; Lebedkin, S. F.; Seppelt, K.; Strauss. S, H.; Boltalina, O. V.; Dunsch, L. J. Am. Chem. Soc. 2007, 129, 11551.  doi: 10.1021/ja073181e

    40. [40]

      Jin, C.; Hettich, R. L.; Compton, R. N.; Tuinman. A.; Derecs-kei-Kovacs. A.; Marynick, D. S.; Dunlap, B. I. Phys. Rev. Lett. 1994, 73, 2821.  doi: 10.1103/PhysRevLett.73.2821

    41. [41]

      Ioffe, I. N.; Goryunkov, A, A.; Boltalina, O. V.; Borschevsky, A. Y.; Sidorov, L. N. Fullerenes, Nanotubes, Carbon Nanostruct. 2005, 12, 169.  doi: 10.1081/FST-120027152

    42. [42]

      Solomeshch, O.; Yu, Y. J.; Goryunkov, A. A.; Sidorov, L. N.; Tuktarov, R. F.; Choi, D. H.; Jin, J. I.; Tessler, N. Adv. Mater. 2009, 21, 4456.  doi: 10.1002/adma.v21:44

    43. [43]

      Yu, Y. J.; Solomeshch, O.; Chechik, H.; Goryunkov, A. A.; Tuktarov, R. F.; Choi, D. H.; Jin, J. I.; Eichen. Y.; Tessler, N. J. Appl. Phys. 2008, 104, 124505.  doi: 10.1063/1.3043872

    44. [44]

      Yoshida, H. J. Phys. Chem. C 2014, 118, 24377.  doi: 10.1021/jp509141y

    45. [45]

      Bakhtizin, R. Z.; Oreshkin, A. I.; Murugan, P.; Kumar, V.; Sa-dowski, J. T.; Fujikawa, Y.; Kawazoe, Y.; Sakurai, T. Chem. Phys. Lett. 2009, 482, 307.  doi: 10.1016/j.cplett.2009.10.020

    46. [46]

      Bakhtizin, R. Z.; Oreshkin, A. I.; Murugan, P.; Kumar, V.; Sa-dowski, J. T.; Fujikawa, Y.; Kawazoe, Y.; Sakurai, T. Fullerenes, Nanotubes, Carbon Nanostruct. 2010, 18, 369.  doi: 10.1080/1536383X.2010.487409

    47. [47]

      Oreshkin, A. I.; Bakhtizin, R. Z.; Murugan, P.; Kumar, V.; Fukui, N.; Hashizume, T.; Sakurai, T. JETP Lett. 2010, 92, 449.  doi: 10.1134/S0021364010190033

    48. [48]

      Lebedev, A. M.; Sukhanov, L. P.; Brzhezinskaya, M. M.; Men'shikov, K. A.; Svechnikov, N. Y.; Chumakov, R. G.; Stankevich, V. G. J. Surf. Invest.:X-Ray, Synchrotron Neutron Tech. 2012, 6, 833.  doi: 10.1134/S1027451012100114

    49. [49]

      Lebedev, A. M.; Menshikov, K. A.; Svechnikov, N. Y.; Sukhanov, L. P.; Chumakov, R. G.; Brzhezinskaya, M. M.; Stankevich, V. G., Bull. Russ. Acad. Sci.:Phys. 2013, 77, 1131.  doi: 10.3103/S1062873813090268

    50. [50]

      Bairagi, K.; Bellec, A.; Chumakov, R. G.; Menshikov, K. A.; Lagoute, J.; Chacon, C.; Girard, Y.; Rousset, S.; Repain, V.; Lebedev, A. M.; Sukhanov, L. P.; Svechnikov, N. Y.; Stankevich, V. G. Surf. Sci. 2015, 641, 248.  doi: 10.1016/j.susc.2015.05.020

    51. [51]

      Kam, F.-Y.; Png, R.-Q.; Ang, M. C. Y.; Kumar, P.; Rubi, K.; Mahendiran, R.; Solomeshch, O.; Tessler, N.; Lim, G.-K.; Chua, L.-L.; Ho, P. K. H. Mater. Horiz. 2017, 4, 456.  doi: 10.1039/C7MH00068E

    52. [52]

      Oreshkin, A. I.; Muzychenko, D. A.; Oreshkin, S. I.; Yakovlev, V. A.; Murugan, P.; Chandrasekaran, S. S.; Kumar, V.; Bakhtizin, R. Z. Nano Res. 2018, 11, 2069.  doi: 10.1007/s12274-017-1823-9

    53. [53]

      Clare, B. W.; Kepert, D. L.; Taylor, R. Org. Biomol. Chem. 2003, 1, 3618.  doi: 10.1039/b307979a

    54. [54]

      Van Lier, G.; De Vleeschouwer, F.; Geerlings, P. Phys. Chem. Chem. Phys. 2009, 11, 5175.  doi: 10.1039/b820747j

    55. [55]

      Szala-Bilnik, J.; Gomes, M. F. C.; Pádua, A. A. H. J. Phys. Chem. C 2016, 120, 19396.  doi: 10.1021/acs.jpcc.6b05140

    56. [56]

      Ekaterina, A. K.; Pavel, A. T. Russ. Chem. Rev. 2017, 86, 805.  doi: 10.1070/RCR4693

    57. [57]

      Taylor, R. C. R. Chim. 2006, 9, 982.  doi: 10.1016/j.crci.2006.01.004

    58. [58]

      Wei, X, W.; Darwish, A. D.; Boltalina, O. V.; Hitchcock, P. B.; Street, J. M.; Taylor, R. Angew. Chem., Int. Ed. 2001, 40, 2989.  doi: 10.1002/(ISSN)1521-3773

    59. [59]

      Darwish, A. D.; Avent, A. G.; Boltalina, O. V.; Gol'dt, I.; Kuvytchko, I.; Ros, T. D.; Street, J. M.; Taylor, R. Chem.-Eur. J. 2003, 9, 2008.  doi: 10.1002/chem.200204549

    60. [60]

      Burley, G. A.; Avent, A. G.; Boltalina, O. V.; Gol'dt, I. V.; Guldi, D. M.; Marcaccio, M.; Paolucci, F.; Paolucci, D.; Taylor, R. Chem. Commun. 2003, 9, 148.

    61. [61]

      Burley, G. A.; Avent, A. G.; Gol'dt, I. V.; Hitchcock, P. B.; Al-Matar, H.; Paolucci, D.; Paolucci, F.; Fowler, P. W.; Soncini, A.; Street, J. M.; Taylor, R. Org. Biomol. Chem. 2004, 2, 319.  doi: 10.1039/B309959H

    62. [62]

      Burley, G. A.; Darwish, A. D.; Street, J. M.; Taylor, R. Tetra-hedron Lett. 2004, 45, 3617.  doi: 10.1016/j.tetlet.2004.03.058

    63. [63]

      Khakina, E. A.; Troyanov, S. I.; Peregudov, A. S.; Soulimenkov, I. V.; Polyakova, N. V.; Troshin, P. A. Chem.-Eur. J. 2010, 16, 12947.  doi: 10.1002/chem.v16.43

    64. [64]

      Khakina, E. A.; Peregudov, A. S.; Troyanov, S. I.; Troshin, P. A. Russ. Chem. Bull. 2012, 61, 264.  doi: 10.1007/s11172-012-0038-1

    65. [65]

      Strobel, P.; Riedel, M.; Ristein, J.; Ley, L.; Boltalina, O. Diamond Relat. Mater. 2005, 14, 451.  doi: 10.1016/j.diamond.2004.12.051

    66. [66]

      Strobel, P.; Ristein, J.; Ley, L.; Seppelt, K.; Goldt, I. V.; Boltalina, O. Diamond Relat. Mater. 2006, 15, 720.  doi: 10.1016/j.diamond.2005.10.034

    67. [67]

      Sque, S. J.; Jones, R.; Goss, J. P.; Briddon, P. R.; Öberg, S. J. Phys.:Condens. Matter 2005, 17, L21.
       

    68. [68]

      Ouyang, T.; Loh, K. P.; Qi, D.; Wee, A. T.; Nesladek, M. ChemPhysChem 2008, 9, 1286.  doi: 10.1002/(ISSN)1439-7641

    69. [69]

      Tada, T.; Uchida, N.; Kanayama, T.; Hiura, H.; Kimoto, K. J. Appl. Phys. 2007, 102, 074504.  doi: 10.1063/1.2786031

    70. [70]

      Tadich, A.; Edmonds, M. T.; Ley, L.; Fromm, F.; Smets, Y.; Mazej, Z.; Riley, J.; Pakes, C. I.; Seyller, T.; Wanke, M. Appl. Phys. Lett. 2013, 102, 241601.  doi: 10.1063/1.4811248

    71. [71]

      Riede, M.; Uhrich, C.; Widmer. J.; Timmreck, R.; Wynands, D.; Schwartz, G.; Gnehr, W. M.; Hildebrandt, D.; Weiss, A.; Hwang, J.; Sundarraj, S.; Erk, P.; Pfeiffer, M.; Leo, K. Adv. Funct. Mater. 2011, 21, 3019.  doi: 10.1002/adfm.201002760

    72. [72]

      Yu, Y. J.; Solomeshch, O.; Chechik, H.; Goryunkov, A. A.; Tuktarov, R. F.; Choi, D. H.; Jin, J. I.; Eichen, Y.; Tessler, N. J. Appl. Phys. 2008, 104, 124505  doi: 10.1063/1.3043872

    73. [73]

      Meerheim, R.; Olthof, S.; Hermenau, M.; Scholz, S.; Petrich, A.; Tessler, N.; Solomeshch, O.; Lüssem, B.; Riede, M.; Leo, K. J. Appl. Phys. 2011, 109, 103102.  doi: 10.1063/1.3590142

    74. [74]

      Pahner, P.; Kleemann, H.; Burtone; L.; Tietze, M. L.; Fischer, J.; Leo, K.; Lüssem, B. Phys. Rev. B 2013, 88, 195205.  doi: 10.1103/PhysRevB.88.195205

    75. [75]

      Li, J.; Rochester, C. W.; Jacobs, I. E.; Friedrich, S.; Stroeve, P.; Riede, M.; Moulé, A. J. ACS Appl. Mater. Interfaces 2015, 7, 28420.  doi: 10.1021/acsami.5b09216

    76. [76]

      Günther, A. A.; Sawatzki, M.; Formánek, P.; Kasemann, D.; Leo, K. Adv. Funct. Mater. 2016, 26, 768.  doi: 10.1002/adfm.201504377

    77. [77]

      Mao, H. Y.; Wang, R.; Zhong, J. Q.; Zhong, S.; Lin, J. D.; Wang, X. Z.; Chen, Z. K.; Chen, W. J. Mater. Chem. C 2013, 1, 1491.  doi: 10.1039/c2tc00110a

    78. [78]

      Streletskiy, A. V.; Kellner, I. D.; Nye, L. C.; Drewello, T.; Hvelplund, P.; Boltalina, O. V. J. Fluorine Chem. 2017, 196, 98.  doi: 10.1016/j.jfluchem.2016.09.015

  • 加载中
    1. [1]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    2. [2]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . Hollow AgPt@Pt core-shell cocatalyst with electron-rich Ptδ shell for boosting selectivity of photocatalytic H2O2 production for faceted BiVO4. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    3. [3]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    4. [4]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    5. [5]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    6. [6]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    7. [7]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    8. [8]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    9. [9]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    10. [10]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    11. [11]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    12. [12]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    13. [13]

      Jiahao Lu Xin Ming Yingjun Liu Yuanyuan Hao Peijuan Zhang Songhan Shi Yi Mao Yue Yu Shengying Cai Zhen Xu Chao Gao . 基于稳态电热法的石墨烯膜导热系数的精确可靠测量. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-. doi: 10.1016/j.actphy.2025.100045

    14. [14]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    15. [15]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    16. [16]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    17. [17]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    18. [18]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    19. [19]

      Jiamin Li Wenyue Zhong Kin Shing Chan . “烯”君入瓮又入学——据元素周期表与酸碱理论谈烯烃教学. University Chemistry, 2025, 40(6): 177-182. doi: 10.12461/PKU.DXHX202408040

    20. [20]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

Metrics
  • PDF Downloads(37)
  • Abstract views(2421)
  • HTML views(514)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return