Progress in the Synthesis of Primary Anilines via C-H Bond Functionalization
- Corresponding author: Lin Haixia, haixialin@staff.shu.edu.cn Dai Huixiong, xdai@sioc.ac.cn
	            Citation:
	            
		            Xu Linlin, Xu Hui, Lin Haixia, Dai Huixiong. Progress in the Synthesis of Primary Anilines via C-H Bond Functionalization[J]. Chinese Journal of Organic Chemistry,
							;2018, 38(8): 1940-1948.
						
							doi:
								10.6023/cjoc201804004
						
					
				
					 
				
	        
 
	                
				(a) Ricci, A. Amino Group Chemistry: From Synthesis to the Life Sciences, Wiley-VCH, Weinheim, 2008. 
(b) Evano, G. ; Theunissen, C. ; Pradal, A. Nat. Prod. Rep. 2013, 30, 1467. 
(c) Okano, K. ; Tokuyama, H. ; Fukuyama, T. Chem. Commun. 2014, 50, 13650. 
(d) Quintas-Cardama, A. ; Kantarjian, H. ; Cortes, J. Nat. Rev. Drug Discovery 2007, 6, 834. 
(e) Uno, S. ; Kamiya, M. ; Yoshihara, T. ; Sugawara, K. ; Okabe, K. ; Tarhan, M. C. ; Fujita, H. ; Funatsu, T. ; Okada, Y. ; Tobita, S. ; Urano, Y. Nat. Chem. 2014, 6, 681. 
(f) Uno, S. ; Kamiya, M. ; Yoshihara, T. ; Sugawara, K. ; Okabe, K. ; Tarhan, M. C. ; Fujita, H. ; Funatsu, T. ; Okada, Y. ; Tobita, S. ; Urano, Y. Nat. Chem. 2014, 6, 681.
				(a) Lawrence, S. A. Amines: Synthesis Properties and Applications, Cambridge University Press, Cambridge, 2004. 
(b) Rappoport, Z. The Chemistry of Anilines, Parts 1 and 2, John Wiley & Sons, New York, 2007. 
(c) Aniszewski, T. Alkaloids. Secrets of Life, Elsevier Science, Amsterdam, 2007.
				(a) Sandmeyer, T. ; Ber. Dtsch. Chem. Ges. 1884, 17, 1633. 
(b) Hodgson, H. H. Chem. Rev. 1947, 40, 251. 
(c) Mo, F. ; Jiang, Y. ; Qiu, D. ; Zhang, Y. ; Wang, J. Angew. Chem., Int. Ed. 2010, 49, 1846. 
(d) Dai, J. ; Fang, C. ; Xiao, B. ; Yi, J. ; Xu, J. ; Liu, Z. ; Lu, X. ; Liu, L. ; Fu, Y. J. Am. Chem. Soc. 2013, 135, 8436. 
(e) Mo, F. ; Dong, G. ; Zhang, Y. ; Wang, J. Org. Biomol. Chem. 2013, 11, 1582.
				Porter, R. J.; Nohria, V.; Rundfeldt, C. Neurotherapeutics 2007, 4, 149.
												 doi: 10.1016/j.nurt.2006.11.012
											
										
				Weijlard, J.; Orahoyats, P. D.; Jr, A. P. S.; Purdue, G.; Heath, F. K.; Pfister, K. J. Am. Chem. Soc. 1956, 78, 2342.
												 doi: 10.1021/ja01591a088
											
										
				Yang, L. P.; Mccormack, P. L. Drugs 2011, 71, 221.
												 doi: 10.2165/11205870-000000000-00000
											
										
				Bartlett, J. B.; Dredge, K.; Dalgleish, A. G. Nat. Rev. Cancer 2004. 4, 314.
												 doi: 10.1038/nrc1323
											
										
				(a) Trost, B. Science (Washington, D. C. ) 1991, 254, 1471. 
(b) Wender, P. A. ; Verma, V. A. ; Paxton, T. J. ; Pillow, T. H. Acc. Chem. Res. 2008, 41, 40. 
(c) Young, I. S. ; Baran, P. S. Nat. Chem. 2009, 1, 193. 
(d) Afagh, N. A. ; Yudin, A. K. Angew. Chem., Int. Ed. 2010, 49, 262. 
(e) Zhu, L. ; Guo, B. ; Tang, D. ; Hu, X. ; Li, G. Hu, C. J. Catal. 2007, 245, 446. 
(g) Singha, S. ; Parida, K. M. Catal. Sci. Technol. 2011, 1, 1496. 
(h) Parida, K. M. ; Rath, D. ; Dash, S. S. J. Mol. Catal. A: Chem. 2010, 318, 85.
Smith, M. B.; March, J. March's Advanced Organic Chemistry:Reactions, Mechanisms and Structure, 6th ed., John Wiley & Sons, Hoboken, 2007.
				(a) Ullmann, F. Ber. 1903, 36, 2382. 
(b) Goldberg, I. Ber. 1906, 39, 1691.
				(a) Kosugi, M. ; Kameyama, M. ; Migita, T. Chem. Lett. 1983, 927. 
(b) Guram, A. S. ; Buchwald, S. L. J. Am. Chem. Soc. 1994, 116, 7901. 
(c) Paul, F. ; Patt, J. ; Hartwig, J. F. J. Am. Chem. Soc. 1994, 116, 5969.
				(a) Chan, D. ; Monaco, K. ; Wang, R. ; Winter, M. Tetrahedron Lett. 1998, 39, 2933. 
(b) Evans, D. ; Katz, J. ; West, T. Tetrahedron Lett. 1998, 39, 2937. 
(c) Lam, P. ; Clark, C. ; Saubern, S. ; Adams, J. ; Winters, M. ; Chan, D. ; Combs, A. Tetrahedron Lett. 1998, 39, 2941.
				(a) Chen, X. ; Engle, K. M. ; Wang, D.-H. ; Yu, J.-Q. Angew. Chem. Int. Ed. 2009, 121, 5196. 
(b) Daugulis, O. ; Do, H.-Q. ; Shabashov, D. Acc. Chem. Res. 2009, 42, 1074. 
(c) Lyons, T. W. ; Sanford, M. S. Chem. Rev. 2010, 110, 1147
				(a) Davies, H. M. L. ; Long, M. S. Angew. Chem., Int. Ed. 2005, 44, 3518. 
(b) Cho, S. H. ; Kim, J. Y. ; Kwak, J. ; Chang, S. Chem. Soc. Rev. 2011, 40, 5068. 
(c) Tsang, W. C. P. ; Zheng, N. ; Buchwald, S. L. J. Am. Chem. Soc. 2005, 127, 14560. 
(d) Wasa, M. ; Yu, J.-Q. J. Am. Chem. Soc. 2008, 130, 14058. 
(e) Hamada, T. ; Ye, X. ; Stahl, S. S. J. Am. Chem. Soc. 2008, 130, 833. 
(f) Matsuda, N. ; Hirano, K. ; Satoh, T. ; Miura, M. Org. Lett. 2011, 13, 2860. 
(g) Li, G. ; Jia, C. ; Sun, K. Org. Lett. 2013, 15, 5198. 
(h) Shang, M. ; Sun, S.-Z. ; Zeng, S.-H. ; Dai, H.-X. ; Yu, J.-Q. Org. Lett. 2013, 15, 5286. 
(i) Brasche, G. ; Buchwald, S. L. ; Angew. Chem., Int. Ed. 2008, 47, 1932. 
(j) Roane, J. ; Daugulis, O. J. Am. Chem. Soc. 2016, 138, 4601. 
(h)Wang, F. ; Jin, L. ; Kong, L.-H. ; Li, X.-W. Org. Lett. 2017, 19, 1812.
				(a) Amaoka, Y. ; Kamijo, S. ; Hoshikawa, T. ; Inoue, M. J. Org. Chem. 2012, 77, 9959. 
(b) Foo, K. ; Sella, E. ; Thome, I. ; Eastgate, M. D. ; Baran, P. S. J. Am. Chem. Soc. 2014, 136, 5279. 
(c) Zhou, L. ; Tang, S. ; Qi, X. ; Lin, C. ; Liu, K. ; Lan Y. ; Lei, A. Org. Lett. 2014, 16, 3404. 
(d) Allen, L. J. ; Cabrera, P. J. ; Cabrera, M. Lee; Sanford, M. S. J. Am. Chem. Soc. 2014, 136, 5607. 
(e) Hwang, Y. ; Park, Y. ; Chang, S. Chem.-Eur. J. 2017, 23, 11147. 
(f) Hong, S. Y. ; Park, Y. ; Hwang, Y. ; Kim, Y. B. ; Baik, M. H. ; Chang, S. Science 2018, 359, 1016.
				Graebe, C. Ber. 1901, 34, 1778.
												 doi: 10.1002/(ISSN)1099-0682
											
										
				Kovacic, P.; Bennett, R. P. J. Am. Chem. Soc. 1961, 83, 221.
												 doi: 10.1021/ja01462a043
											
										
				Yuzawa, H.; Yoshida, H. Chem. Commun. 2010, 46, 8854.
												 doi: 10.1039/c0cc03551c
											
										
				(a) Yu, T. ; Yang, R. ; Xia, S. ; Li, G. ; Hu, C. Catal. Sci. Technol. 2014, 4, 3159. 
(b) Yu, T. ; Zhang, Q. ; Xia, S. ; Li, G. ; Hu, C. Catal. Sci. Technol. 2014, 4, 639.
				Paudyal, M. P.; Adebesin, A. M.; Burt, S. R.; Ess, D. H.; Ma, Z.; Kürti, L.; Falck, J. R. Science (Washington, D. C.) 2016, 353, 1144.
										 
				Legnani, L.; Prina Cerai, G.; Morandi, B. ACS Catal. 2016, 6, 8162.
												 doi: 10.1021/acscatal.6b02576
											
										
				Yi, H.; Zhang, G.; Wang, H.; Huang, Z.; Wang, J.; Singh, A. K; Lei, A. Chem. Rev. 2017, 117, 9016.
												 doi: 10.1021/acs.chemrev.6b00620
											
										
				Citterio, A.; Gentile, A.; Minisci, F.; Navarrini, V.; Serravalle, M.; Ventura, S. J. Org. Chem. 1984, 49, 4479.
												 doi: 10.1021/jo00197a030
											
										
				Morofuji, T.; Shimizu, A.; Yoshida, J.-I. J. Am. Chem. Soc. 2013, 135, 5000.
												 doi: 10.1021/ja402083e
											
										
				Morofuji, T.; Shimizu, A.; Yoshida, J.-I. Chem.-Eur. J. 2015, 21, 3211.
												 doi: 10.1002/chem.v21.8
											
										
				Kim, H.; Kim, T.; Lee, D. G.; Roh, S. W.; Lee, C. Chem. Commun. 2014, 50, 9273.
												 doi: 10.1039/C4CC03905J
											
										
				Romero, N. A.; Margrey, K. A.; Tay, N. E.; Nicewicz, D. A. Science (Washington, D. C.) 2015, 349, 1326.
												 doi: 10.1126/science.aac9895
											
										
				Zheng, Y.-W.; Chen, B.; Ye, P.; Feng, K.; Wang, W.; Meng, Q.-Y.; Wu, L.-Z.; Tung, C.-H. J. Am. Chem. Soc. 2016, 138, 10080.
												 doi: 10.1021/jacs.6b05498
											
										
				Liu, J.-Z.; Wu, K.; Shen, T.; Liang, Y.-J.; Zou, M.-C.; Zhu, Y.-C.; Li, X. W.; Li, X.-Y.; Jiao, N. Chem.-Eur. J. 2017, 23, 563.
												 doi: 10.1002/chem.201605476
											
										
				(a) Kakiuchi, F. ; Sekine, S. ; Kamatani, A. ; Sonoda, M. ; Chatani, N. ; Murai, S. Bull. Chem. Soc. Jpn. 1995, 68, 62. 
(b) Giri, R. ; Shi, B.-F. ; Engle, K. M. ; Maugel, N. ; Yu, J.-Q. Chem. Soc. Rev. 2009, 38, 3242. 
(c) Colby, D. A. ; Bergman, R. G. ; Ellman, J. A. Chem. Rev. 2010, 110, 624. 
(d) Wencel-Delord, J. ; Dröge, T. ; Liu, F. ; Glorius, F. Chem. Soc. Rev. 2011, 40, 4740. 
(g) Arockiam, P. B. ; Bruneau, C. ; Dixneuf, P. H. Chem. Rev. 2012, 112, 5879.
				(a) Liu, J.-D. ; Chen, G.-S; Tan Z. Adv. Synth. Catal. 2016, 358, 1174. 
(b) Jiao, J. ; Murakami, K. ; Itami, K. ACS Catal. 2016, 6, 610. 
(c) Park, Y. ; Kim, Y. ; Chang, S. Chem. Rev. 2017, 117, 9247.
				(a) Chen, X. ; Hao, X.-S. ; Goodhue, C. E. ; Yu, J.-Q. J. Am. Chem. Soc. 2006, 128, 6790. 
(b) Rao, W.-H. ; Shi, B.-F. Org. Chem. Front. 2016, 3, 1028. 
(c) Shang, M. ; Sun, S.-Z. ; Wang, M.-M. ; Dai, H.-X. Synthesis 2016, 48, 4381.
				Peng, J.; Chen, M.; Xie, Z.; Luo, S.; Zhu, Q. Org. Chem. Front. 2014, 1, 777.
												 doi: 10.1039/C4QO00143E
											
										
				Yu, L.; Chen, X.; L, D; Tan, Z.; Gui, Q.-W. Adv. Synth. Catal. 2018, 360, 1346.
												 doi: 10.1002/adsc.v360.7
											
										
				Yu, S.-J.; Wan, B.-S.; Li, X.-W. Org. Lett. 2013, 15, 3706.
												 doi: 10.1021/ol401569u
											
										
				Raghuvanshi, K.; Zell, D.; Rauch, K.; Ackermann, L. ACS Catal. 2016, 6, 3172
												 doi: 10.1021/acscatal.6b00711
											
										
				Li, Z.; Yu, H.; Bolm, C. Angew. Chem., Int. Ed. 2017, 56, 9532.
												 doi: 10.1002/anie.v56.32
											
										
				Tezuka, N.; Shimojo, K.; Komagawa, S.; Miyamoto, K.; Saito, T.; Takita, R.; Uchiyama, M. J. Am. Chem. Soc. 2016, 138, 9166.
												 doi: 10.1021/jacs.6b03855
											
										
 
						
						
						
	                Yanhui Guo , Li Wei , Zhonglin Wen , Chaorong Qi , Huanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004
Geyang Song , Dong Xue , Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . 基于激发态手性铜催化的烯烃E→Z异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087
Lu Zhuoran , Li Shengkai , Lu Yuxuan , Wang Shuangyin , Zou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003
Mengyang LI , Hao XU , Zhonghao NIU , Chunhua GONG , Weihui ZHONG , Jingli XIE . Highly effective catalytic synthesis of β-amino alcohols by using viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1294-1300. doi: 10.11862/CJIC.20250080
Dong Xiang , Kunzhen Li , Kanghua Miao , Ran Long , Yujie Xiong , Xiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027
Yuanyuan Ping , Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092
Fugui XI , Du LI , Zhourui YAN , Hui WANG , Junyu XIANG , Zhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291
Hanxue LIU , Shijie LI , Meng REN , Xuling XUE , Hongke LIU . Design and antitumor properties of dehydroabietic acid functionalized cyclometalated iridium(Ⅲ) complex. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1483-1494. doi: 10.11862/CJIC.20250031
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002
Xinwan Zhao , Yue Cao , Minjun Lei , Zhiliang Jin , Tsubaki Noritatsu . Constructing S-scheme heterojunctions by integrating covalent organic frameworks with transition metal sulfides for efficient noble-metal-free photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(12): 100152-0. doi: 10.1016/j.actphy.2025.100152
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021
Yi Yang , Xin Zhou , Miaoli Gu , Bei Cheng , Zhen Wu , Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
Xinyu Zhu , Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106
Wen Jiang , Jieli Lin , Zhongshu Li . 低配位含磷官能团的研究进展. University Chemistry, 2025, 40(8): 138-151. doi: 10.12461/PKU.DXHX202409144
Zeyu Liu , Wenze Huang , Yang Xiao , Jundong Zhang , Weijin Kong , Peng Wu , Chenzi Zhao , Aibing Chen , Qiang Zhang . Nanocomposite Current Collectors for Anode-Free All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2305040-0. doi: 10.3866/PKU.WHXB202305040
Bowen Liu , Jianjun Zhang , Han Li , Bei Cheng , Chuanbiao Bie . MOF-derived ZnO/PANI S-scheme heterojunction for efficient photocatalytic phenol mineralization coupled with H2O2 generation. Acta Physico-Chimica Sinica, 2025, 41(10): 100121-0. doi: 10.1016/j.actphy.2025.100121
Xin Zhou , Yiting Huo , Songyu Yang , Bowen He , Xiaojing Wang , Zhen Wu , Jianjun Zhang . Understanding the effect of pH on protonated COF during photocatalytic H2O2 production by femtosecond transient absorption spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(12): 100160-0. doi: 10.1016/j.actphy.2025.100160